80 research outputs found

    optimization and validation of a new method for the production of lipid nanoparticles for ophthalmic application

    Get PDF
    Within a wider research project aimed at the pre-industrial development of nanotechnology platforms for the treatment of eye diseases, this work exploited the possibility of obtaining solid lipid nanocarriers (SLN) using ingredients and operating conditions that could be compatible with the technological requirements of medical formulations used for ophthalmic therapies and, above all, capable of an easy industrial scale-up. In particular, we tested the possibility of adapting a production method known as Quasi-emulsion Solvent Diffusion (QESD), which already shows a number of operational advantages, such as use of low temperatures and reduced concentrations of surfactants, also to very small production volumes, compatible with expensive and/or poorly available drugs. Cationic SLN (cSLN) were produced using a commercial lipid matrix (Softisan® S100), loaded with a lipophilic probe compound. These cationic carriers could be advantageous in ensuring a prolonged retention onto the negatively charged mucous surface of the cornea. Depending on their composition, cSLN systems with a mean size around 170-250 nm, a good size distribution profile, and a net positive charge (+30/+50 mV) were produced by the QESD technique. Only highly biocompatible, ICH-class 3 solvents, such as ethanol and acetone, were used. Most nanocarriers showed a good physical stability upon storage and could be produced respecting some formulation requirements, such as pH close to neutrality and an osmolarity compatible with the eye surface

    Chitosan glutamate hydrogels with local anesthetic activity for buccal application.

    Get PDF
    Hydrogels for the buccal application of the anesthetic drug lidocaine hydrochloride (LDC) were prepared using chitosan glutamate (CHG), a soluble salt of chitosan, or a binary mixture of CHG and glycerin, at different weight ratios. The in vitro drug release was studied at the pH value of saliva to assess the effect of the different formulations on drug delivery. The anesthetic activity of mucoadhesive LDC-CHG hydrogels was assessed in vivo after application on the buccal mucosa, compared to commercial semisolid formulations containing the same drug. LDC-loaded hydrogels can be proposed for the symptom relief of aphthosis or other painful mouth diseases

    Sinapic Acid Release at the Cell Level by Incorporation into Nanoparticles: Experimental Evidence Using Biomembrane Models

    Get PDF
    Sinapic acid (SA), belonging to the phenylpropanoid family, and its derivatives are secondary metabolites found in the plant kingdom. In recent years, they have drawn attention because of their various biological activities, including neuroprotective effects. In this study, SA was incorporated into two different nanoparticle systems, solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC). The influence of different concentrations of SA on the nanoparticle systems was evaluated. It was studied the efficacy of the nanoparticle systems to release the active ingredient at cell level through the use of models of biological membranes represented by multilamellar vesicles (MLV) of dimyristoylphosphatidylcholine (DMPC) and conducting kinetic studies by placing in contact SLN and NLC, both unloaded and loaded with two different amounts of SA, with the same biological membrane model. Differential scanning calorimetry (DSC) was used for these studies. The results indicated a different distribution of SA within the two nanoparticle systems and that NLC are able to incorporate and release SA inside the structure of the biological membrane model

    Essential oils: pharmaceutical applications and encapsulation strategies into lipid-based delivery systems

    Get PDF
    Essential oils are being studied for more than 60 years, but a growing interest has emerged in the recent decades due to a desire for a rediscovery of natural remedies. Essential oils are known for millennia and, already in prehistoric times, they were used for medicinal and ritual purposes due to their therapeutic properties. Using a variety of methods refined over the centuries, essential oils are extracted from plant raw materials: the choice of the extraction method is decisive, since it determines the type, quantity, and stereochemical structure of the essential oil molecules. To these components belong all properties that make essential oils so interesting for pharmaceutical uses; the most investigated ones are antioxidant, anti-inflammatory, antimicrobial, wound-healing, and anxiolytic activities. However, the main limitations to their use are their hydrophobicity, instability, high volatility, and risk of toxicity. A successful strategy to overcome these limitations is the encapsulation within delivery systems, which enable the increase of essential oils bioavailability and improve their chemical stability, while reducing their volatility and toxicity. Among all the suitable platforms, our review focused on the lipid-based ones, in particular micro- and nanoemulsions, liposomes, solid lipid nanoparticles, and nanostructured lipid carriers.This work was supported by a grant from the Italian Ministry of Research [Grant PRIN2017 #20173ZECCM Tracking biological barriers to antigen delivery by nanotechnological vaccines(NanoTechVax)] and by Research Funding for University of Catania (Piano per la Ricerca 2016–2018—Linea Di Intervento 2 “Dotazione Ordinaria” cod. 57722172106). Cinzia Cimino was supported bythe PhD program in Biotechnology, XXXVI cycle, University of Cataniainfo:eu-repo/semantics/publishedVersio

    Paclitaxel loading in PLGA nanospheres affected the in vitro drug cell accumulation and antiproliferative activity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>PTX is one of the most widely used drug in oncology due to its high efficacy against solid tumors and several hematological cancers. PTX is administered in a formulation containing 1:1 Cremophor<sup>® </sup>EL (polyethoxylated castor oil) and ethanol, often responsible for toxic effects. Its encapsulation in colloidal delivery systems would gain an improved targeting to cancer cells, reducing the dose and frequency of administration.</p> <p>Methods</p> <p>In this paper PTX was loaded in PLGA NS. The activity of PTX-NS was assessed in vitro against thyroid, breast and bladder cancer cell lines in cultures. Cell growth was evaluated by MTS assay, intracellular NS uptake was performed using coumarin-6 labelled NS and the amount of intracellular PTX was measured by HPLC.</p> <p>Results</p> <p>NS loaded with 3% PTX (w/w) had a mean size < 250 nm and a polydispersity index of 0.4 after freeze-drying with 0.5% HP-Cyd as cryoprotector. PTX encapsulation efficiency was 30% and NS showed a prolonged drug release in vitro. An increase of the cytotoxic effect of PTX-NS was observed with respect to free PTX in all cell lines tested.</p> <p>Conclusion</p> <p>These findings suggest that the greater biological effect of PTX-NS could be due to higher uptake of the drug inside the cells as shown by intracellular NS uptake and cell accumulation studies.</p

    Preparation and Microbiological Evaluation of Amphiphilic Kanamycin-Lipoamino Acid Ion-Pairs

    No full text
    Amphiphilic ion-pairs of kanamycin (KAN) were prepared by evaporation of a water-ethanol co-solution of KAN base and a lipoamino acid bearing a 12-carbon atoms alkyl side chain (LAA12), at different molar ratios. Infrared spectroscopy confirmed the structure of ion-pairs, while differential scanning calorimetry (DSC) and powder X-ray diffractometry (PXRD) studies supported the formation of new saline species with a different crystalline structure than the starting components. The solubility pattern shown in a range of both aqueous and organic solvents confirmed that the ion-pairs possess an amphiphilic character. The LAA12 counter-ion showed not to improve the antibacterial activity of KAN, suggesting that such chemical strategy is not able to favor the penetration of this drug inside the bacteria cells. Nevertheless, a slight improving, i.e., a one-fold dilution, was observed in E. coli. The present study can also serve as the basis for a further evaluation of LAA ion-pairing of antibiotics, as a means to improve the loading of hydrophilic drugs into lipid-based nanocarriers
    • …
    corecore