1,023 research outputs found

    Multicenter Validation of the Vasoactive-Ventilation-Renal Score as a Predictor of Prolonged Mechanical Ventilation After Neonatal Cardiac Surgery

    Get PDF
    Objectives: We sought to validate the Vasoactive-Ventilation-Renal score, a novel disease severity index, as a predictor of outcome in a multicenter cohort of neonates who underwent cardiac surgery. Design: Retrospective chart review. Setting: Seven tertiary-care referral centers. Patients: Neonates defined as age less than or equal to 30 days at the time of cardiac surgery. Interventions: Ventilation index, Vasoactive-Inotrope Score, serum lactate, and Vasoactive-Ventilation-Renal score were recorded for three postoperative time points: ICU admission, 6 hours, and 12 hours. Peak values, defined as the highest of the three measurements, were also noted. Vasoactive-Ventilation-Renal was calculated as follows: ventilation index + Vasoactive-Inotrope Score + Δ creatinine (change in creatinine from baseline × 10). Primary outcome was prolonged duration of mechanical ventilation, defined as greater than 96 hours. Receiver operative characteristic curves were generated, and abilities of variables to correctly classify prolonged duration of mechanical ventilation were compared using area under the curve values. Multivariable logistic regression modeling was also performed. Measurements and Main Results: We reviewed 275 neonates. Median age at surgery was 7 days (25th–75th percentile, 5–12 d), 86 (31%) had single ventricle anatomy, and 183 (67%) were classified as Society of Thoracic Surgeons-European Association for Cardio-Thoracic Surgery Congenital Heart Surgery Mortality Category 4 or 5. Prolonged duration of mechanical ventilation occurred in 89 patients (32%). At each postoperative time point, the area under the curve for prolonged duration of mechanical ventilation was significantly greater for the Vasoactive-Ventilation-Renal score as compared to the ventilation index, Vasoactive-Inotrope Score, and serum lactate, with an area under the curve for peak Vasoactive-Ventilation-Renal score of 0.82 (95% CI, 0.77–0.88). On multivariable analysis, peak Vasoactive-Ventilation-Renal score was independently associated with prolonged duration of mechanical ventilation, odds ratio (per 1 unit increase): 1.08 (95% CI, 1.04–1.12). Conclusions: In this multicenter cohort of neonates who underwent cardiac surgery, the Vasoactive-Ventilation-Renal score was a reliable predictor of postoperative outcome and outperformed more traditional measures of disease complexity and severity

    Tidal modelling with Thetis: preliminary English Channel benchmarking

    Get PDF
    This report describes the application and benchmarking of the Thetis coastal ocean model for tidal modelling, and makes use of a test case based upon the English Channel. Comparisons are made between model predictions and tide gauge data at a number of locations across the English Channel. A preliminary investigation of the impact of mesh resolution and bathymetry data is given. A demonstration is also provided of Thetis’s ability to use adjoint technology to optimise model predictions through the assimilation of observational data. In the example presented here the bottom friction field is optimised to provide an improved match between the model results and tide gauge data. This adjoint based optimisation capability may also be used to optimise the location, size and design of tidal power generation schemes

    Reduced Order Modeling of an Adaptive Mesh Ocean Model

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchiv

    Tidal dynamics and mangrove carbon sequestration during the Oligo–Miocene in the South China Sea

    Get PDF
    Modern mangroves are among the most carbon-rich biomes on Earth, but their long-term (≥106 yr) impact on the global carbon cycle is unknown. The extent, productivity and preservation of mangroves are controlled by the interplay of tectonics, global sea level and sedimentation, including tide, wave and fluvial processes. The impact of these processes on mangrove-bearing successions in the Oligo–Miocene of the South China Sea (SCS) is evaluated herein. Palaeogeographic reconstructions, palaeotidal modelling, and facies analysis suggest that elevated tidal range and bed shear stress optimised mangrove development along tide-influenced tropical coastlines. Preservation of mangrove organic carbon (OC) was promoted by high tectonic subsidence and fluvial sediment supply. Lithospheric storage of OC in peripheral SCS basins potentially exceeded 4000 Gt (equivalent to 2000 ppm of atmospheric CO2). These results highlight the crucial impact of tectonic and oceanographic processes on mangrove OC sequestration within the global carbon cycle on geological timescales
    • …
    corecore