403 research outputs found

    Temperature dependence of the (π,0)(\pi,0) anomaly in the excitation spectrum of the 2D quantum Heisenberg antiferromagnet

    Full text link
    It is well established that in the low-temperature limit, the two-dimensional quantum Heisenberg antiferromagnet on a square lattice (2DQHAFSL) exhibits an anomaly in its spectrum at short-wavelengths on the zone-boundary. In the vicinity of the (π,0)(\pi,0) point the pole in the one-magnon response exhibits a downward dispersion, is heavily damped and attenuated, giving way to an isotropic continuum of excitations extending to high energies. The origin of the anomaly and the presence of the continuum are of current theoretical interest, with suggestions focused around the idea that the latter evidences the existence of spinons in a two-dimensional system. Here we present the results of neutron inelastic scattering experiments and Quantum Monte Carlo calculations on the metallo-organic compound Cu(DCOO)24_2\cdot 4D2_2O (CFTD), an excellent physical realisation of the 2DQHAFSL, designed to investigate how the anomaly at (π,0)(\pi,0) evolves up to finite temperatures T/J2/3T/J\sim2/3. Our data reveal that on warming the anomaly survives the loss of long-range, three-dimensional order, and is thus a robust feature of the two-dimensional system. With further increase of temperature the zone-boundary response gradually softens and broadens, washing out the (π,0)(\pi,0) anomaly. This is confirmed by a comparison of our data with the results of finite-temperature Quantum Monte Carlo simulations where the two are found to be in good accord. At lower energies, in the vicinity of the antiferromagnetic zone centre, there was no significant softening of the magnetic excitations over the range of temperatures investigated.Comment: Dedicated to the life and work of Professor Roger Cowley. 22 pages, 8 figure

    Eddy current studies from the undulator-based positron source target wheel prototype

    Get PDF
    The ef­fi­cien­cy of fu­ture positron sources for the next gen­er­a­tion of high-en­er­gy par­ti­cle col­lid­ers (e.g. ILC, CLIC, LHeC) can be im­proved if the positron-pro­duc­tion tar­get is im­mersed in the mag­net­ic field of ad­ja­cent cap­ture op­tics. If the tar­get is also ro­tat­ing due to heat de­po­si­tion con­sid­er­a­tions then eddy cur­rents may be in­duced and lead to ad­di­tion­al heat­ing and stress­es. In this paper we pre­sent data from a ro­tat­ing tar­get wheel pro­to­type for the base­line ILC positron source. The wheel has been op­er­at­ed at rev­o­lu­tion rates up to 1800rpm in fields of the order of 1 Tesla. Com­par­isons are made be­tween torque data ob­tained from a trans­duc­er on the tar­get drive shaft and the re­sults of fi­nite-el­e­ment sim­u­la­tions. Ro­tor­dy­nam­ics is­sues are pre­sent­ed and fu­ture ex­per­i­ments on other as­pects of the positron source tar­get sta­tion are con­sid­ered

    Walking the walk: a phenomenological study of long distance walking

    Get PDF
    Evidence suggests that regular walking can elicit significant psychological benefits although little evidence exists concerning long distance walking. The purpose of this study was to provide detailed accounts of the experiences of long distance walkers. Phenomenological interviews were conducted with six long distance walkers. Data were transcribed verbatim before researchers independently analyzed the transcripts. Participants reported a cumulative effect with positive feelings increasing throughout the duration of the walk. Long distance walking elicited positive emotions, reduced the effects of life-stress, and promoted an increased sense of well-being and personal growth. Results are aligned to theories and concepts from positive psychology

    The makewaves tsunami tests and their relevance to tsunami engineering and risk management

    Get PDF
    MAKEWAVES is an international multi-partner collaborative project bringing together nine academic institutions and two commercial consultancies. The objective of the collaboration is to develop experimental data and associated numerical modelling on tsunami inundation and interaction with boulders, buildings, natural and engineered barriers, towards the development of new internationally accepted guidance for structural codes and standards. Using a pneumatic tsunami simulator (TS) developed jointly by HR Wallingford and UCL the team conducted experiments between November 2022 and April 2023 within a highly instrumented 100m long flume. The TS is capable of simulating realistic trough and crest-led tsunami waves at 1:50, including traces from the The TS is capable of generating very long trough and crest-led waves, and can reproduce at 1:50 scale waves from real life events such as the Mercator trace from the 2004 Indian Ocean event and the and 2011 Tohoku tsunamis. The TS capability has been further extended to include bore-waves. The characteristics of the waves are controlled by adjusting the flow rate and total volume of water drawn in and discharged by the TS. The experimental campaign is was subdivided into discrete research areas, each aimed at furthering knowledge on how different tsunami wave characteristics affect their interaction with manmade and natural structures environments. These include tests aimed at understanding: (1) how roughness representative of coastal forests and mangroves affects tsunami inundation characteristics, (2) how tsunami interact with boulders (3) the effectiveness of offshore breakwaters as tsunami barriers (4) how structural loads and foundation scour are affected by building permeability. This paper presents an overview of the tests conducted and some of the important early observations made that are relevant to future engineering standards and to tsunami disaster management
    corecore