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We have added the capability to look at in-cylinder fuel distributions using a previously developed 
ignition model within a fluid mechanics code (KIVA3V) that uses an artificial neural network 
(ANN) to predict ignition (The combined code: KIVA3V-ANN).  KIVA3V-ANN was originally 
developed and validated for analysis of Homogeneous Charge Compression Ignition (HCCI) 
combustion, but it is also applicable to the more difficult problem of Premixed Charge 
Compression Ignition (PCCI) combustion.  PCCI combustion refers to cases where combustion 
occurs as a nonmixing controlled, chemical kinetics dominated, autoignition process, where the 
fuel, air, and residual gas mixtures are not necessarily as homogeneous as in HCCI combustion. 

This paper analyzes the effects of introducing charge non-uniformity into a KIVA3V-ANN 
simulation.  The results are compared to experimental results, as well as simulation results using a 
more physically representative and computationally intensive code (KIVA3V-MPI-MZ), which 
links a fluid mechanics code to a multi-zone detailed chemical kinetics solver. The results indicate 
that KIVA3V-ANN produces reasonable approximations to the more accurate KIVA3V-MPI-MZ 
at a much reduced computational cost. 

1. Introduction 

Homogeneous Charge Compression Ignition (HCCI) engines are under consideration as a future 
technology alternative to Diesel and Spark Ignition engines due to the possibility of achieving 
high efficiency with substantially lower NOX and particulate emissions [1-3].  Barriers to 
practical implementation exist, such as high rates of heat release and high peak cylinder 
pressures, which limit the power output of an HCCI engine.  In addition, HCCI engines tend to 
output high unburned hydrocarbon and carbon monoxide (CO) emissions.  It is desirable to 
attempt to extend HCCI into a region where it could provide a higher specific power output, 
particularly for use with heavy truck engines.  Composition stratification in particular may be 
used to extend the burn duration at higher loads, as well as extending the low load operating 
range [4, 5].  This particular strategy of allowing fuel-air mixtures with composition 
inhomogeneity while retaining chemical kinetics dominated ignition has been described as 
premixed charge compression ignition (PCCI) [6].   
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The nature of HCCI as chemically kinetically dominated, with little effect of turbulent mixing, 
makes it possible to produce effective detailed chemical kinetics based models that are less 
computationally expensive than SI or diesel modeling [7].  However, accurate modeling of the 
chemical kinetics still entails considerable computational power, to capture the chemical and 
fluid mechanics detail required for an accurate model.  Previous work has reduced the 
computational cost of this modeling by using a multi-zone model with a sequential coupling of 
fluid mechanics to a multi-zone chemical approach [8].  However, these approaches still require 
considerable computational time to complete, so other methods have been tried to provide 
reduced but still accurate models that enable less computationally intensive simulations.  One 
such approach is to use an artificial neural network (ANN) to model the combustion coupled 
with a fluid mechanics code (KIVA3V) [7].  This paper extends that work by applying fuel 
distributions in the cylinder to model PCCI combustion coupled with an ANN model for 
combustion.   

 

2. Simulation Setup    

The ANN setup and tuning is detailed in previous work [7].  The ANN is an approximator for 
non-linear functions that provides an output based on a specified set of input parameters and a 
training procedure.  The neural network used in this study predicts ignition delay, τ, which is the 
time required for a fuel-air mixture to release half of the available chemical heat at constant 
pressure.  The input parameters used for the ANN model are temperature (T), pressure (p), 
equivalence ratio (φ), and residual gas fraction (EGR), and can be seen in Figure 1 [7]. 

 

 

 
Figure 1.  Schematic depiction of  the Artificial Neural Network Setup 

 

The ignition integral shown below in equation 1, calculates ignition based on the ignition delay 
time history during a given thermodynamic process (here the compression stroke) [9].  Typically, 
ignition is considered to occur in a mixture of fuel and air when I (t) equals 1, however for our 
study ignition is set when I (t) =0.7 as explained later. 

( ) ( )∫=
t

dt
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        (1) 
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The same neural network training was used as in the earlier study validated with a homogeneous 
fuel-air distribution [7].  Training the network requires conducting many zero-dimensional 
constant volume reactor simulations where important combustion parameters. A detailed 
isooctane chemical kinetic mechanism was used to train the network. The operating regime used 
for the training was specified as follows using 38,800 points: 

0.2  EGR  0
0.45   0.1
≤≤

≤≤ϕ
bar 200  p bar  1

K 1500  T K  600
≤≤
≤≤

O9HCO8O5.8HC 22188 +→+

 

The neural network implemented in the KIVA3V-ANN setup calculates the ignition delay for 
every cell in the computational mesh.  It should be noted that the ignition integral information is 
not advected or diffused between cells.  When the ignition integral of the cell reaches the 
specified 0.7 value mentioned earlier, combustion begins.  The selection of the lower value is 
used since the ANN was trained using 50% heat release to predict the start of combustion.  Also, 
the KIVA3V-ANN model used does not predict pre-ignition chemistry, which has been shown to 
introduce a significantly shorter ignition delay time [10].  Combustion of iso-octane is calculated 
using the following 2-step mechanism (note this occurs only in ignited cells) [11]: 

       (2) 

22 CO0.5OCO →+          (3) 

Table 1 lists the chemical kinetic constants and reaction rates used, which were identical to those 
used previously [7]. 
Table 1.  Chemical kinetic constants and reaction rates used for Equations 2 and 3.  C is the pre-

exponential factor and E is the activation temperature in K. 
 

Reaction C E Reaction Rate 

Equation 2, forward 5.7x1011 1.51x104 C exp(-E/T)[C8H18]0.25[O2]1.5 

Equation 2, 
backward 

0 0 0 

Equation 3, 
forward, 

1.0x1010 2.0x104 C exp(-E/T)[CO]1.0[H2O]0.5[O2]0.25 

Equation 3, 
backward 

5.0x107 2.0x104 C exp(-E/T)[CO2]1.0 

 

The geometry and operating conditions used for the study come from the Sandia HCCI engine 
[12].  The engine is a Cummins B-series medium-duty diesel production engine modified to 
operate on a single cylinder with an axisymmetric piston that provides a large squish clearance 
and minimum top ring-land crevice volume of 1.4% of the top dead center (TDC) volume.  The 
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compression ratio used is 17.63:1, and the other engine specifications can be found in Table 2.  
The experiments kept ignition timing fixed at a few degrees before top dead center, and using an 
equivalence ratio between 0.04 and 0.26.  The only equivalence ratios analyzed here are 
0.10.0.16.0.20, and 0.26, as these falls within the range that the neural network is trained for. 

Table 2.  Operating parameters for the Cummins B engine used in the Sandia experiments. 

Displaced volume, cm3 981 

Bore, mm 102 

Stroke, mm 120 

Connecting rod length, mm 192 

Compression ratio 17.63:1 

Exhaust valve open 60° BBDC 

Exhaust valve close 8° ATDC 

Inlet valve open 3° BTDC 

Inlet valve close 25° ABDC 

Engine speed, rpm 1200 

Fuel Iso-octane 

Equivalence ratio 0.04-0.26 

Absolute intake pressure, bar 1.2 

 

A schematic of the cylinder can be seen in Figure 2, with the computational mesh used shown in 
Figure 3. 

 

 
Figure 2.  Cylinder Schematic for Sandia modified Cummins B engine. 
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Figure 3.  View of axisymmetric KIVA3V-ANN mesh used shown at 60 degrees before TDC.  At 

bottom dead center the grid has 51000 elements. 

Distribution of fuel and air has been implemented to enable the study of the effect of a non-
homogeneous fuel distribution in the cylinder, similar to the distribution tested for the multi-zone 
model [6].  The stratified mixtures are achieved by imposing a distribution on the equivalence 
ratio that varies linearly from the cylinder centerline to the cylinder liner, as used previously [6, 
13, 14].  Three distributions are imposed at the point of intake valve closure, identified as 
homogeneous, shallow, and steep.  The homogeneous distribution is a uniform distribution that is 
identical to that used in earlier pure HCCI simulations.   The shallow distribution has a local 
equivalence ratio at the centerline that is double the overall equivalence ratio, with the local 
equivalence ratio at the wall being one-half the average equivalence ratio.  The steep distribution 
has a centerline equivalence ratio of three times the average equivalence ratio, with an 
equivalence ratio of zero at the wall.  As these distributions are imposed before ignition, mixing 
as the compression stroke progresses affects the local distributions.  Figures 4 shows the 
different distributions used in the KIVA3V-ANN and PCCI study. 
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Figure 4. Equivalence ratio distributions for three analyzed stratifications for φ=0.2 

3. Results 

Figures 5-8 show pressure traces at varying equivalence ratios for the KIVA3V-ANN and Multi-
zone simulations, as well as the experimental results from the Sandia experiment.  The figures 
show experimental results (dotted line), neural network results (solid lines), and multi-zone 
results (dashed lines).   
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Figure 5.  Pressure vs. Crank Angle for φ=0.10.  The figure shows experimental results (dotted 

line), neural network results (solid lines), and multi-zone results (dashed lines). 
 

 
Figure 6.  Pressure vs. Crank Angle for φ=0.16.  The figure shows experimental results (dotted 

line), neural network results (solid lines), and multi-zone results (dashed lines). 
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Figure 7.  Pressure vs. Crank Angle for φ=0.20.  The figure shows experimental results (dotted 

line), neural network results (solid lines), and multi-zone results (dashed lines). 
 

 
Figure 8.  Pressure vs. Crank Angle for φ=0.26.  The figure shows experimental results (dotted 

line), neural network results (solid lines), and multi-zone results (dashed lines). 
 
The neural network results show good agreement with the experimental results; however the 
multi-zone results more closely match the experiments.  The neural network does not capture 
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low temperature heat release, and so underpredicts the experiment and multi-zone model early in 
the combustion process.  The fast burn that occurs within the KIVA3V-ANN model is also 
visible in the figures 5-8, as the sudden slope change when the KIVA3V-ANN initiates 
combustion.  For lower equivalence ratios, this fast combustion leads to an overshoot of the 
experimental results in the later stages of combustion.  This is due to the fact that raising the 
equivalence ratio near the centerline results in locally increased temperatures, which leads to 
faster and more complete combustion.  As the average equivalence ratio rises, this effect is less 
dominant.  The stratification effect can be seen in that the homogeneous cases have the lowest 
peak pressure, which increases for the shallow case, and is the highest for the steep distributions. 
 
The KIVA3V-ANN setup does not predict non-fuel hydrocarbon production because the 
mechanism considers only fuel once the ignition criteria is met. However, it can predict CO, 
CO2, and unburned fuel present in the emissions.  Figures 9-11 show the percentage of fuel 
carbon into hydrocarbons, CO, and CO2. 
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Figure 9.  Percentage of Fuel Carbon into Hydrocarbons (note KIVA3V-ANN only predicts 

unburned fuel) 
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Figure 10.  Percentage of Fuel Carbon into CO Emissions 
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Figure 11.  Percentage of Fuel into CO2 Emissions 

 

Figure 9 show a comparison of hydrocarbon emissions for KIVA3V-ANN simulation, multizone 
simulation, and experiment.  Note that KIVA3V-ANN only considers fuel, while the experiment 
and multi-zone model resolve all hydrocarbons. KIVA3V-ANN tends to underpredict the amount 
of unburned fuel, particularly at lower equivalence ratios, but this could be expected due to the 
simplified mechanism for combustion used.  Also, it should be noted again that the KIVA3V-
ANN model does not predict oxygenated hydrocarbon production.  The steep distribution shows 
the largest amount of unburned fuel, possibly due to the lower equivalence ratios near the 
cylinder edge and crevice region.  The KIVA3V-ANN model shows good agreement with the 
experiment and multi-zone models for CO and CO2 production, particularly at the higher 
equivalence ratios, with small differences seen among the stratified cases.  Disagreement at the 
lowest equivalence ratio of 0.10 could be due to the neural network’s training cases starting at 
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φ=0.10, so these cases are on the very edge of the range that the model is prepared to handle.  An 
important note is that the KIVA3V-ANN model also does not include NOx formation chemistry 
at this time. 

4. Conclusions 

This paper showed the use of an artificial neural network combustion model applied to HCCI 
and PCCI combustion cases.  This KIVA3V-ANN combustion model keeps track of the ignition 
delay time history to predict combustion.  Once the combustion threshold is reached, a two-step 
chemical kinetic mechanism is used to predict the combustion behavior of ignited cells.  The 
following conclusions have been seen: 
 

1. KIVA3V-ANN has been compared with a previous experiment, and shows reasonable 
predictions for combustion and emissions (with emissions predictions limited to those 
present in the KIVA3V-ANN model).  These results also compared well with previous 
results using a multi-zone model with more extensive chemistry, although the multi-zone 
results did tend to more closely track the experimental data. 

2. KIVA3V-ANN as seen previously [7], predicts fast combustion and overpredicts peak 
cylinder pressure, with the stratified cases predicting higher peak pressures as the 
stratification increases (shallow to steep case). 

3. The KIVA3V-ANN model underpredicts hydrocarbon emissions (and the mechanism 
does not include oxygenated hydrocarbon production.) 

4. The KIVA3V-ANN model as implemented does not include low-temperature heat 
release, and so tends to underpredict pressure in the early stages of combustion.  Also due 
to the sudden switch upon reaching the specified trigger in the ignition integral, the 
pressure traces show a clear change in slope as combustion begins to occur throughout 
the cylinder for the KIVA3V-ANN model.  This may introduce larger errors when 
analyzing HCCI/PCCI combustion of low octane fuels (n-heptane, diesel). 

5. KIVA3V-ANN gives reasonable prediction of non-homogeneous PCCI combustion with 
isooctane with much lower computational effort than full chemical kinetics simulation.  

 

Acknowledgments 

This work was performed under the auspices of the U.S. Department of Energy by University of 
California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48. 

References 

[1] P. M. Najt, D. E. Foster.  SAE Paper 830264, 1983. 
[2] R. H. Thring.  SAE Paper 892068, 1989.  
[3] M. Christensen, B. Johansson, and P. Einewall.  SAE Paper 972874, 1997. 
[4] J. E. Dec, M. Sjöberg.  SAE Paper 2003-01-0752, 2003. 
[5] J. M. Grenda.  SAE Paper 2005-01-3722, 2005. 
[6] D. L. Flowers, S. M. Aceves, A. Babajimopoulos.  SAE Paper 2006-01-1363, 2006. 
[7] S. M. Aceves, D. L. Flowers, J.-Y. Chen, A. Babajimopoulos.  SAE Paper 2006-01-3298, 2006. 
[8] S. M. Aceves, D. L. Flowers, C. K. Westbrook, J. R. Smith, W. J. Pitz, R. Dibble, M. Christensen, B. 

Johannson.  SAE Paper 2000-01-0327, 2000. 

11 



2007 Fall Meeting of WSS/CI – Paper # 07F-29  Topic: IC Engine and Gas Turbine Combustion 

12 

[9] J. C. Livengood, P. C. Wu.  Proceedings of the Combustion Institute 5 (1955) 347-356. 
[10] R. Ogink.  Proceedings of the 7th SAE International Conference on Engines for Automobile, ICE2005, Paper 

2005-24-37, 2005. 
[11] C. K. Westbrook, F. L. Dryer. Combustion Science and Technology 27(1981) 31-43. 
[12] J. E. Dec, M. Sjöberg.  SAE Paper 2003-01-0752, 2003. 
[13] S. M. Aceves, D. L. Flowers, F. Espinosa-Loza, A. Babajimopoulos, D .N. Assanis.  SAE Paper 2005-01-

0115, 2005. 
[14] A. Babajimopoulos, D. L. Flowers, D. N. Assanis, S. M. Aceves, R. P. Hessel.  International Journal of 

Engine Research vol. 6 #5 (2005) 497-512. 
 
 


