366 research outputs found

    Quantum squeezing generation versus photon localization in a disordered microcavity

    Get PDF
    We investigate theoretically the nonlinear dynamics induced by an intense pump field in a disordered planar microcavity. Through a self-consistent theory, we show how the generation of quantum optical noise squeezing is affected by the breaking of the in-plane translational invariance and the occurrence of photon localization. We find that the generation of single-mode Kerr squeezing for the ideal planar case can be prevented by disorder as a result of multimode nonlinear coupling, even when the other modes are in the vacuum state. However, the excess noise is a non-monotonous function of the disorder amplitude. In the strong localization limit, we show that the system becomes protected with respect to this fundamental coupling mechanism and that the ideal quadrature squeezing generation can be obtained

    Employee recognition, meaningfulness and behavioural involvement: Test of a moderated mediation model

    Get PDF
    This study examines how and under what conditions recognition practices are related to employee behavioural involvement at work. Combining social cognitive theory, social information processing theory and self-concordance theory, we develop and test a moderated mediation model in which (a) manager recognition promotes behavioural involvement both directly and indirectly through the intervening role of meaningfulness and (b) coworker recognition strengthens the benefits of manager recognition to meaningfulness and subsequent behavioural involvement. The results of a study of 130 employees provided empirical support for our model. These findings help clarify how different sources of recognition can shape the effective behavioural involvement in the workplace; they also emphasize the role of meaningfulness as an important psychological mechanism that explains the recognition–behaviour relation. The implications for theory and practice are discussed

    Polarization-selective grating mirrors used in the generation of radial polarization

    Get PDF
    Two novel methods to control the polarization of laser radiation are presented. The discrimination between different polarization distributions isperformed with a corrugation grating in the top high-index layer of a multilayer mirror, which couples the undesired polarization into a lossy waveguidemode of the multilayer. The generation of radially polarized radiation in a laser resonator is presented as a practical verification of the principl

    Duty cycle tolerant binary gratings for fabricable short period phase masks

    Get PDF
    Wavelength scale 1D binary gratings of rectangular corrugation profile are often used as diffractive elements acting on incident free space waves under different incidence angle, wavelength and polarization. Their optical function is best understood by considering the interplay of the grating modes propagating up and down the periodic walls and slits of the segmented structure. The interference conditions between modes depend on the difference between the effective index of the interfering modes and on their relative amplitude. This difference and relative amplitude depend critically on the ratio between the wall and slit widths which is difficult to control technologically. The condition for a wide tolerance of the effective index difference and for a balanced mode excitation on the wall/slit ratio is found analytically and once for all for a wide class of 1D gratings. It is also found that TE interference elements may exhibit a very wide wall/slit ratio tolerance domain

    The density of anthropogenic features explains seasonal and behaviour-based functional responses in selection of linear features by a social predator

    Get PDF
    Anthropogenic linear features facilitate access and travel efficiency for predators, and can influence predator distribution and encounter rates with prey. We used GPS collar data from eight wolf packs and characteristics of seismic lines to investigate whether ease-of-travel or access to areas presumed to be preferred by prey best explained seasonal selection patterns of wolves near seismic lines, and whether the density of anthropogenic features led to functional responses in habitat selection. At a broad scale, wolves showed evidence of habitat-driven functional responses by exhibiting greater selection for areas near low-vegetation height seismic lines in areas with low densities of anthropogenic features. We highlight the importance of considering landscape heterogeneity and habitat characteristics, and the functional response in habitat selection when investigating seasonal behaviour-based selection patterns. Our results support behaviour in line with search for primary prey during summer and fall, and ease-of-travel during spring, while patterns of selection during winter aligned best with ease-of-travel for the less-industrialized foothills landscape, and with search for primary prey in the more-industrialized boreal landscape. These results highlight that time-sensitive restoration actions on anthropogenic features can affect the probability of overlap between predators and threatened prey within different landscapes

    The occupancy-abundance relationship and sampling designs using occupancy to monitor populations of Asian bears

    Get PDF
    Designing a population monitoring program for Asian bears presents challenges associated with their low densities and detectability, generally large home ranges, and logistical or resource constraints. The use of an occupancy-based method to monitor bear populations can be appropriate under certain conditions given the mechanistic relationship between occupancy and abundance. The form of the occupancy\u2013abundance relationship is dependent on species-specific characteristics such as home range size and population density, as well as study area size. To assess the statistical power of tests to detect population change of Asian bears, we conducted a study using a range of scenarios by simulating spatially explicit individual-based capture-recapture data from a demographically open model. Simulations assessed the power to detect changes in population density via changes in site-level occupancy or abundance through time, estimated using a standard occupancy model or a Royle-Nichols model, both with point detectors (representing camera traps). We used IUCN Red List criteria as a guide in selection of two population decline scenarios (20% and 50%), but we chose a shorter time horizon (10 years = 1 bear generation), meaning that declines were steeper than used for IUCN criteria (3 generations). Our simulations detected population declines of 50% with high power (>0.80) and low false positive rates (FPR: incorrectly detecting a decline) (<0.10) when detectors were spaced at > 0.67 times the home range diameter (home-range spacing ratio: HRSR, a measure of spatial correlation), such that bears would tend to overlap no more than two detectors. There was high (0.85) correlation between realized occupancy and N in these scenarios. The FPR increased as the HRSR decreased because of spatial correlation in the occupancy process induced when individual home ranges overlap multiple detectors. The mean statistical power to detect more gradual population declines (20% in 10 years) with HRSR > 0.67 was low for occupancy models 0.22 (maximum power 0.67) and Royle-Nichols models (0.24; maximum power 0.67), suggesting that declines of this magnitude may not be described reliably with 10 years of monitoring. Our results demonstrated that under many realistic scenarios that we explored, false positive rates were unacceptably high. We highlight that when designing occupancy studies, the spacing between point detectors be at least 0.67 times the diameter of the home range size of the larger sex (e.g., males) when the assumptions of the spatial capture-recapture model used for simulation are met
    • …
    corecore