4,327 research outputs found

    Does simulation-based training facilitate the integration of human anatomy with surgery? A report of a novel Surgical Anatomy Course

    Get PDF
    Background: Knowledge of gross anatomy, as a basic core subject, is fundamental for medical students and essential to medical practitioners, particularly for those intending a surgical career. However, both medical students and clinical teachers have found a significant gap in teaching basic sciences and the transition into clinical skills. The authors present a Surgical Anatomy Course developed to teach the anatomical basis of surgical procedures with particular emphasis on laparo­scopic skills while incorporating medical simulation. Materials and methods: An evaluation of the students’ satisfaction of the Surgical Anatomy Course was completed using a mix of multiple choice and open-ended questions, and a six-point Likert Scale. Questions were asked about the students’ perceived improvement in surgical and laparoscopic skills. Manual skills were assessed using a laparoscopic simulator. Results: Both evaluation of the course structure and the general impression of the course were positive. Most students believed the course should be an integral part of a modern curriculum. The course supported the traditional surgical classes and improved anatomical knowledge and strengthened students’ confidentiality and facilitated understanding and taking surgical rotations. Conclusions: A medical course combining the practical learning of anatomy and surgical-based approaches will bring out the best from the students. Medical students positively evaluated the Surgical Anatomy Course as useful and benefi­cial regarding understanding anatomical structure and relationship necessary for further surgical education. (Folia Morphol 2018; 77, 2: 279–285

    Magnetic Properties of Monomer and Dimer Tetrahedral VOx Entities Dispersed on Amorphous Silica-based Materials: Prediction of EPR Parameters from Relativistic DFT Calculations and Broken Symmetry Approach to Exchange Couplings

    Get PDF
    Molecular structures of the isolated tetrahedral oxovanadium(IV) and bridged μ-oxo-divanadium(IV) complexes hosted by the clusters mimicking surfaces of amorphous silica-based materials were investigated using density functional theory (DFT) calculations. Principal values of the g and A tensors for the monomer vanadyl species were obtained using the coupled-perturbed DFT level of theory and the spin–orbit mean-field approximation (SOMF). Magnetic exchange interaction for the μ-oxo bridged vanadium(IV) dimer was investigated within the broken symmetry approach. An antiferromagnetic coupling of the individual magnetic moments of the vanadium(IV) centers in the [VO–O–VO]2+ bridges was revealed and discussed in detail. The coupling explains pronounced decrease of the electron paramagnetic resonance signal (EPR) intensity, observed for the reduced VOx/SiO2 samples with the increasing coverage of vanadia, in terms of transformation of the paramagnetic monomer species into the dimers with S = 0 ground state

    Studies on bridging tractions - simultaneous bridging tractions and COD measurements

    Get PDF
    The main objective of this work is to investigate the bridging tractions in a model composite using optical fiber Bragg grating (FBG) sensors written into selected reinforcing fibers. Simultaneously, the crack opening displacement (COD) is measured using a speckle interferometry technique. The measurements are useful in the verification of the relation between the COD and bridging tractions established with the use of the weight function method. Center crack specimens made of epoxy and reinforced with one layer of optical fibers are prepared and tested under remote tension parallel to the fibers. Bragg gratings of 0.17 to 0.38mm in length are introduced in selected fibers for direct, non invasive, local measurements of axial strains in these fibers. A controlled central crack, bridged by intact fibers, is introduced by a laser technique such that the FBGs are located between the crack faces. The results on the forces obtained from the FBGs and the COD-weight function method show good agreement. The experimental results also compare very well with 3-dimensional numerical simulations of the actual specimen geometry and loading configuratio

    Accessory spleen mimicking pancreatic tumour: evaluation by 99mTc-labelled colloid SPECT/CT study. Report of two cases and a review of nuclear medicine methods utility

    Get PDF
    The accessory spleen is a common congenital anomaly, typically asymptomatic and harmless to the patient. However, in some clinical cases, this anomaly beco­mes significant as it can be mistaken for a tumour or lymph node and be missed during a therapeutic splenectomy. There are nuclear medicine modalities which can be applied in the identification and localisation of an accessory spleen. They include scintigraphy with radiolabelled colloids or heat damaged red blood cells, which are trapped in the splenic tissue. Modern techniques, including hybrid imaging, enable simultaneous structure and tracer distribution evaluations. Additionally, radiation-guided surgery can be used in cases where the accessory spleen, which is usually small (not exceeding 1 cm) and difficult to find among other tissues, has to be removed. In the study, we would like to present 2 cases of patients in which the malignancy had to be excluded for the reason that the multiple accessory spleens were very closely related to the pancreas. There was a lack of certainty in the multi-phase computed tomography (CT) evaluation; however, this situation was clearly resolved by using the 99mTc-stannous colloid single photon emission computed tomography/ CT study. We would also like to briefly analyse the clinical applications of nuclear medicine in case of an accessory spleen

    Reaction pathways involved in CH4 conversion on Pd/Al2O3 catalysts : TAP as a powerful tool for the elucidation of the effective role of the metal/support interface

    Get PDF
    Temporal Analysis of Products (TAP) investigation on Natural Gas-fueled Vehicle (NGV) catalysts provides information related to the nature of reaction steps involved over noble metals and at the metal-support interface. The determination of accurate kinetic parameters for methane adsorption from single pulse experiments and subsequent investigation of sequential surface reactions from alternative CH4/O2 pulse experiments is the first step toward the establishment of relevant structure/activity relationships which can highlight the importance of the metal/support interface on freshly-prepared and aged single palladium based catalysts
    corecore