19 research outputs found

    MYCT1-TV, A Novel MYCT1 Transcript, Is Regulated by c-Myc and May Participate in Laryngeal Carcinogenesis

    Get PDF
    BACKGROUND: MYCT1, a putative target of c-Myc, is a novel candidate tumor suppressor gene cloned from laryngeal squamous cell carcinoma (LSCC). Its transcriptional regulation and biological effects on LSCC have not been clarified. METHODOLOGY/PRINCIPAL FINDINGS: Using RACE assay, we cloned a 1106 bp transcript named Myc target 1 transcript variant 1 (MYCT1-TV) and confirmed its transcriptional start site was located at 140 bp upstream of the ATG start codon of MYCT1-TV. Luciferase, electrophoretic mobility shift and chromatin immunoprecipitation assays confirmed c-Myc could regulate the promoter activity of MYCT1-TV by specifically binding to the E-box elements within -886 to -655 bp region. These results were further verified by site-directed mutagenesis and RNA interference (RNAi) assays. MYCT1-TV and MYCT1 expressed lower in LSCC than those in paired adjacent normal laryngeal tissues, and overexpression of MYCT1-TV and MYCT1 could inhibit cell proliferation and invasion and promote apoptosis in LSCC cells. CONCLUSIONS/SIGNIFICANCE: Our data indicate that MYCT1-TV, a novel MYCT1 transcript, is regulated by c-Myc and down-regulation of MYCT1-TV/MYCT1 could contribute to LSCC development and function

    Modelowanie procesu dziania podczas wrabiania nitek elastomerowych na szydełkarkach z klasyczną strefą dziania i strefą relanit

    No full text
    An analysis of the knitting process during the knitting-in of elastomeric threads using knitting machines with a Relanit and classic knitting zone was made on the basis of simulations considering a numerical model which takes into account the most important parameters of the knitting process, viscoelastic properties of the thread and geometrical parameters of the knitting zone. The conditions of forming stitches from classic cotton yarn were presented for comparison. The results of the simulation tests were verified experimentally on a computer-aided knitting machine with a classic knitting zone.Analizy procesu dziania podczas wrabiania nitek elastomerowych na szydełkarkach z klasyczną strefą dziania i strefą Relanitdokonano na podstawie badań symulacyjnych w oparciu o model numeryczny, uwzględniający najważniejsze parametry procesu dziania, własności lepkosprężyste tworzywa nitki oraz parametry geometryczne strefy dziania. Dla celów porównawczych przedstawiono również warunki formowania oczek z przędzy klasycznej bawełnianej. Wyniki badań symulacyjnych zweryfikowano eksperymentalnie na komputerowej szydełkarce pomiarowej z klasyczną strefą dziania

    Comparative proteome analysis revealing an 11-protein signature for aggressive triple-negative breast cancer

    Get PDF
    Item does not contain fulltextBACKGROUND: Clinical outcome of patients with triple-negative breast cancer (TNBC) is highly variable. This study aims to identify and validate a prognostic protein signature for TNBC patients to reduce unnecessary adjuvant systemic therapy. METHODS: Frozen primary tumors were collected from 126 lymph node-negative and adjuvant therapy-naive TNBC patients. These samples were used for global proteome profiling in two series: an in-house training (n = 63) and a multicenter test (n = 63) set. Patients who remained free of distant metastasis for a minimum of 5 years after surgery were defined as having good prognosis. Cox regression analysis was performed to develop a prognostic signature, which was independently validated. All statistical tests were two-sided. RESULTS: An 11-protein signature was developed in the training set (median follow-up for good-prognosis patients = 117 months) and subsequently validated in the test set (median follow-up for good-prognosis patients = 108 months) showing 89.5% sensitivity (95% confidence interval [CI] = 69.2% to 98.1%), 70.5% specificity (95% CI = 61.7% to 74.2%), 56.7% positive predictive value (95% CI = 43.8% to 62.1%), and 93.9% negative predictive value (95% CI = 82.3% to 98.9%) for poor-prognosis patients. The predicted poor-prognosis patients had higher risk to develop distant metastasis than the predicted good-prognosis patients in univariate (hazard ratio [HR] = 13.15; 95% CI = 3.03 to 57.07; P = .001) and multivariable (HR = 12.45; 95% CI = 2.67 to 58.11; P = .001) analysis. Furthermore, the predicted poor-prognosis group had statistically significantly more breast cancer-specific mortality. Using our signature as guidance, more than 60% of patients would have been exempted from unnecessary adjuvant chemotherapy compared with conventional prognostic guidelines. CONCLUSIONS: We report the first validated proteomic signature to assess the natural course of clinical TNBC
    corecore