1,248 research outputs found

    Demonstration of new possibilities of multilayer technology on resistive microstrip/ microdot detectors

    Full text link
    The first successful attempts to optimize the electric field in Resistive Microstrip Gas Chamber and resistive microdot detectors using additional field shaping strips located inside the detector substrate are describedComment: Presented at the RD-51 mmini week, CERN, June 201

    A new search for anomalous neutrino oscillations at the CERN-PS

    Get PDF
    The LSND experiment has observed a 3.8 sigma excess of anti-nu_e events from an anti-nu_mu beam coming from pions at rest. If confirmed, the LSND anomaly would imply new physics beyond the standard model, presumably in the form of some additional sterile neutrinos. The MiniBooNE experiment at FNAL-Booster has further searched for the LSND anomaly. Above 475 MeV, the nu_e result is excluding the LSND anomaly to about 1.6 sigma but it introduces an unexplained, new 3.0 sigma anomaly at lower energies, down to 200 MeV. The nu_e data have so far an insufficient statistics to be conclusive with LSND's anti-nu_e. The present proposal at the CERN-PS is based on two strictly identical LAr-TPC detectors in the near and far positions, respectively at 127 and 850 m from the neutrino (or antineutrino) target and focussing horn, observing the electron-neutrino signal. This project will benefit from the already developed technology of ICARUS T600, well tested on surface in Pavia, without the need of any major R&D activity and without the added problems of an underground experiment (CNGS-2). The superior quality of the Liquid Argon imaging TPC and its unique electron - pi-zero discrimination allow full rejection of the NC background, without efficiency loss for electron neutrino detection. In two years of exposure, the far detector mass of 600 tons and a reasonable utilization of the CERN-PS with the refurbished previous TT7 beam line will allow to collect about 10^6 charged current events, largely adequate to settle definitely the LSND anomaly.Comment: 23 pages, 17 figures, added watermark, better referencin

    Facility for fast neutron irradiation tests of electronics at the ISIS spallation neutron source

    Get PDF
    The VESUVIO beam line at the ISIS spallation neutron source was set up for neutron irradiation tests in the neutron energy range above 10 MeV. The neutron flux and energy spectrum were shown, in benchmark activation measurements, to provide a neutron spectrum similar to the ambient one at sea level, but with an enhancement in intensity of a factor of 107. Such conditions are suitable for accelerated testing of electronic components, as was demonstrated here by measurements of soft error rates in recent technology field programable gate arrays

    Operation of a LAr-TPC equipped with a multilayer LEM charge readout

    Get PDF
    A novel detector for the ionization signal in a single phase LAr-TPC, based on the adoption of a multilayer Large Electron Multiplier (LEM) replacing the traditional anodic wire arrays, has been experimented in the ICARINO test facility at the INFN Laboratories in Legnaro. Cosmic muon tracks were detected allowing the measurement of energy deposition and a first determination of the signal to noise ratio. The analysis of the recorded events demonstrated the 3D reconstruction capability of ionizing events in this device in liquid Argon, collecting a fraction of about 90% of the ionization signal with signal to noise ratio similar to that measured with more traditional wire chambersComment: 9 pages, 7 Figure

    Mouse and rat ultrasonic vocalizations in neuroscience and neuropharmacology: State of the art and future applications

    Get PDF
    Mice and rats emit ultrasonic vocalizations (USVs), which may express their arousal and emotional states, to communicate with each other. There is continued scientific effort to better understand the functions of USVs as a central element of the rodent behavioral repertoire. However, studying USVs is not only important because of their ethological relevance, but also because they are widely applied as a behavioral readout in various fields of biomedical research. In mice and rats, a large number of experimental models of brain disorders exist and studying the emission of USVs in these models can provide valuable information about the health status of the animals and the effectiveness of possible interventions, both environmental and pharmacological. This review (i) provides an updated overview of the contexts in which ultrasonic calling behaviour of mice and rats has particularly high translational value, and (ii) gives some examples of novel approaches and tools used for the analysis of USVs in mice and rats, combining qualitative and quantitative methods. The relevance of age and sex differences as well as the importance of longitudinal evaluations of calling and non-calling behaviour is also discussed. Finally, the importance of assessing the communicative impact of USVs in the receiver, that is, through playback studies, is highlighted

    Proton momentum distribution in a protein hydration shell

    Get PDF
    The momentum distribution of protons in the hydration shell of a globular protein has been measured through deep inelastic neutron scattering at 180 and 290 K, below and above the crossover temperature T-c=1.23T(g), where T-g=219 K is the glass transition temperature. It is found that the mean kinetic energy of the water hydrogens shows no temperature dependence, but the measurements are accurate enough to indicate a sensible change of momentum distribution and effective potential felt by protons, compatible with the transition from a single to a double potential well. This could support the presence of tunneling effects even at room temperature, playing an important role in biological function

    Free electron lifetime achievements in Liquid Argon Imaging TPC

    Get PDF
    A key feature for the success of the liquid Argon imaging TPC (LAr-TPC) technology is the industrial purification against electro-negative impurities, especially Oxygen and Nitrogen remnants, which have to be continuously kept at an exceptionally low level by filtering and recirculating liquid Argon. Improved purification techniques have been applied to a 120 liters LAr-TPC test facility in the INFN-LNL laboratory. Through-going muon tracks have been used to determine the free electron lifetime in liquid Argon against electro-negative impurities. The short path length here observed (30 cm) is compensated by the high accuracy in the observation of the specific ionization of cosmic ray muons at sea level as a function of the drift distance. A free electron lifetime of (21.4+7.3-4.3) ms, namely > 15.8 ms at 90 % C.L. has been observed over several weeks under stable conditions, corresponding to a residual Oxygen equivalent of about 15 ppt (part per trillion). At 500 V/cm, the free electron speed is 1.5 m/ms. In a LAr-TPC a free electron lifetime in excess of 15 ms corresponds for instance to an attenuation of less than 15 % after a drift path of 5 m, opening the way to the operation of the LAr-TPC with exceptionally long drift distances.Comment: 15 pages, 10 figures; Accepted for publication in JINS
    • …
    corecore