73 research outputs found

    Flexible and High Temperature Supercapacitor Based on Laser-Induced Graphene Electrodes and Ionic Liquid Electrolyte, a De-rated Voltage Analysis.

    Get PDF
    Herein we report the fabrication and electrochemical characterization of a novel type of supercapacitor composed of laser-induced graphene (LIG) electrodes, achieved by the laser-writing of polyimide foils, and 1-Butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid as electrolyte. This combination allows the development of a flexible microsupercapacitor suitable for harsh environment application. The influence of several parameters is evaluated with the aim of maximizing the performance of the flexible pouch-bag devices, such as the laser-writing conditions, type of electrode layout and amount of nitrogen-doping. Among them, the laser writing conditions are found to strongly influence the areal capacitance allowing to achieve about 4 mF cm−2, as measured from the galvanostatic charge-discharge measurement at 10 µA cm−2, with a maximum operating potential range of 3 V at 25 °C. In order to probe the potential application of such device, i) flexible pouch architecture and ii) high temperature measurements (considering harsh environment field) are investigated. This type of flexible device exhibits energy and power density as high as 4.5 µWh cm−2 and 90.5 µW cm−2, respectively, high cycling stability as well as acceptable coulombic efficiency above 97% demonstrating good stability even at high bending condition (1.25 cm of bending radius). The electrochemical measurements increasing temperature up to 100 °C reveal a 300% of rise in capacitance and 43% of increment in energy density at de-rated voltage. The obtained energy storage performance are comparable to the best data ever reported for a microsupercapacitor for high temperature application. Moreover, a de-rated voltage analysis (DVA) is proposed as a safe procedure to characterize an energy storage device in an extended temperature range without compromising the system performances

    Effects of zoledronic acid and dexamethasone on early phases of socket healing after tooth extraction in rats : a preliminary macroscopic and microscopic quantitative study

    Get PDF
    The exact pathogenesis of medication-related osteonecrosis of the jaw (MRONJ) is still unknown. The aim of this paper was to investigate the effects of zoledronic acid and dexamethasone on the early phases of socket healing in rats subjected to tooth extractions. Thirty male Sprague-Dawley rats were divided into 2 groups: pharmacologically treated group (T, n=20) and non-pharmacologically treated group (C, n=10). T group rats received 0.1 mg/Kg of zoledronic acid (ZOL) and 1 mg/Kg of dexamethasone (DEX) three times a week for 10 consecutive weeks. C group rats were infused with vehicle. After 9 weeks from the first infusion, first maxillary molars were extracted in each of the rats. Quantitative macroscopic and microscopic analysis was performed to evaluate socket healing 8 days after extraction. Pharmacologically treated rats showed significant inhibition of bone remodeling. Connective tissue/alveolar bone ratio, osteoclast number and woven bone deposition were significantly reduced in group T compared to group C. Conversely, the proportion of necrotic bone was higher in group T compared to group C (0.8% and 0.3%, respectively. P=0.031). ZOL plus DEX do not cause gross effects on socket healing at a macroscopic level. Our findings confirmed that exposure to ZOL plus DEX impairs alveolar wound repair. Inhibition of osteoclastic resorption of socket walls after tooth extraction and the inability to dispose of the necrotic bone may be considered the initial steps of MRONJ onset

    Reinforcing the Electrode/Electrolyte Interphases of Lithium Metal Batteries Employing Locally Concentrated Ionic Liquid Electrolytes

    Get PDF
    Lithium metal batteries (LMBs) with nickel-rich cathodes are promising candidates for next-generation high-energy-density batteries, but the lack of sufficiently protective electrode/electrolyte interphases (EEIs) limits their cyclability. Herein, trifluoromethoxybenzene is proposed as a cosolvent for locally concentrated ionic liquid electrolytes (LCILEs) to reinforce the EEIs. With a comparative study of a neat ionic liquid electrolyte (ILE) and three LCILEs employing fluorobenzene, trifluoromethylbenzene, or trifluoromethoxybenzene as cosolvents, it is revealed that the fluorinated groups tethered to the benzene ring of the cosolvents not only affect the electrolytes' ionic conductivity and fluidity, but also the EEIs' composition via adjusting the contribution of the 1-ethyl-3-methylimidazolium cation (Emim+) and bis(fluorosulfonyl)imide anion. Trifluoromethoxybenzene, as the optimal cosolvent, leads to a stable cycling of LMBs employing 5 mAh cm-2 lithium metal anodes (LMAs), 21 mg cm-2 LiNi0.8Co0.15Al0.05 (NCA) cathodes, and 4.2 mu L mAh-1 electrolytes for 150 cycles with a remarkable capacity retention of 71%, thanks to a solid electrolyte interphase rich in inorganic species on LMAs and, particularly, a uniform cathode/electrolyte interphase rich in Emim+-derived species on NCA cathodes. By contrast, the capacity retention under the same condition is only 16%, 46%, and 18% for the neat ILE and the LCILEs based on fluorobenzene and benzotrifluoride, respectively.A locally concentrated ionic liquid electrolyte based on trifluoromethoxybenzene cosolvent is proposed for lithium metal batteries with nickel-rich cathodes, through a comparative study of three fluorinated aromatic cosolvents. The generated solid electrolyte interphase rich in inorganic species on anodes and, particularly, a uniform cathode/electrolyte interphase rich in organic cation-derived species on cathodes enable stable cycling of Li/LiNi0.8Co0.15Al0.05O2 cells.imag

    Reinforcing the Electrode/Electrolyte Interphases of Lithium Metal Batteries Employing Locally Concentrated Ionic Liquid Electrolytes

    Get PDF
    Lithium metal batteries (LMBs) with nickel-rich cathodes are promising candidates for next-generation high-energy-density batteries, but the lack of sufficiently protective electrode/electrolyte interphases (EEIs) limits their cyclability. Herein, trifluoromethoxybenzene is proposed as a cosolvent for locally concentrated ionic liquid electrolytes (LCILEs) to reinforce the EEIs. With a comparative study of a neat ionic liquid electrolyte (ILE) and three LCILEs employing fluorobenzene, trifluoromethylbenzene, or trifluoromethoxybenzene as cosolvents, it is revealed that the fluorinated groups tethered to the benzene ring of the cosolvents not only affect the electrolytes’ ionic conductivity and fluidity, but also the EEIs’ composition via adjusting the contribution of the 1-ethyl-3-methylimidazolium cation (Emim+^+) and bis(fluorosulfonyl)imide anion. Trifluoromethoxybenzene, as the optimal cosolvent, leads to a stable cycling of LMBs employing 5 mAh cm2^{−2} lithium metal anodes (LMAs), 21 mg cm2^{−2} LiNi0.8_{0.8}Co0.15_{0.15}Al0.05_{0.05} (NCA) cathodes, and 4.2 µL mAh1^{−1} electrolytes for 150 cycles with a remarkable capacity retention of 71%, thanks to a solid electrolyte interphase rich in inorganic species on LMAs and, particularly, a uniform cathode/electrolyte interphase rich in Emim+^+-derived species on NCA cathodes. By contrast, the capacity retention under the same condition is only 16%, 46%, and 18% for the neat ILE and the LCILEs based on fluorobenzene and benzotrifluoride, respectively

    Locally Concentrated Ionic Liquid Electrolyte with Partially Solvating Diluent for Lithium/Sulfurized Polyacrylonitrile Batteries

    Get PDF
    The development of Li/sulfurized polyacrylonitrile (SPAN) batteries requires electrolytes that can form stable electrolyte/electrode interphases simultaneously on lithium-metal anodes (LMAs) and SPAN cathodes. Herein, a low-flammability locally concentrated ionic liquid electrolyte (LCILE) employing monofluorobenzene (mFBn) as the diluent is proposed for Li/SPAN cells. Unlike non-solvating diluents in other LCILEs, mFBn partially solvates Li+^+, decreasing the coordination between Li+^+ and bis(fluorosulfonyl)imide (FSI^−). In turn, this triggers a more substantial decomposition of FSI^− and consequently results in the formation of a solid electrolyte interphase (SEI) rich in inorganic compounds, which enables a remarkable Coulombic efficiency (99.72%) of LMAs. Meanwhile, a protective cathode electrolyte interphase (CEI), derived mainly from FSI^− and organic cations, is generated on the SPAN cathodes, preventing the dissolution of polysulfides. Benefiting from the robust interphases simultaneously formed on both the electrodes, a highly stable cycling of Li/SPAN cells for 250 cycles with a capacity retention of 71% is achieved employing the LCILE and only 80% lithium-metal excess

    Difluorobenzene‐Based Locally Concentrated Ionic Liquid Electrolyte Enabling Stable Cycling of Lithium Metal Batteries with Nickel‐Rich Cathode

    Get PDF
    Lithium metal batteries (LMBs) with nickel-rich cathodes are promising candidates for next-generation, high-energy batteries. However, the highly reactive electrodes usually exhibit poor interfacial compatibility with conventional electrolytes, leading to limited cyclability. Herein, a locally concentrated ionic liquid electrolyte (LCILE) consisting of lithium bis(fluorosulfonyl)imide (LiFSI), 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EmimFSI), and 1,2-difluorobenzene (dFBn) is designed to overcome this challenge. As a cosolvent, dFBn not only promotes the Li+^{+} transport with respect to the electrolyte based on the ionic liquid only, but also has beneficial effects on the electrode/electrolyte interphases (EEIs) on lithium metal anodes (LMAs) and LiNi0.8_{0.8}Mn0.1_{0.1}Co0.1_{0.1}O2_{2} (NMC811) cathodes. As a result, the developed LCILE enables dendrite-free cycling of LMAs with a coulombic efficiency (CE) up to 99.57% at 0.5 mA cm2^{-2} and highly stable cycling of Li/NMC811 cells (4.4 V) at C/3 charge and 1 C discharge (1 C = 2 mA cm−2) for 500 cycles with a capacity retention of 93%. In contrast, the dFBn-free electrolyte achieves lithium stripping/plating CE, and the Li/NMC811 cells’ capacity retention of only 98.22% and 16%, respectively under the same conditions. The insight into the coordination structure, promoted Li+^{+} transport, and EEI characteristics gives fundamental information essential for further developing (IL-based) electrolytes for long-life, high-energy LMBs

    Role of α1 Acid Glycoprotein in the In Vivo Resistance of Human BCR-ABL+ Leukemic Cells to the Abl Inhibitor STI571

    Get PDF
    Background: Chronic myeloid leukemia is caused by a chromosomal translocation that results in an oncogenic fusion protein, Bcr-Abl. Bcr-Abl is a tyrosine kinase whose activity is inhibited by the antineoplastic drug STI571. This drug can cure mice given an injection of human leukemic cells, but treatment ultimately fails in animals that have large tumors when treatment is initiated. We created a mouse model to explore the mechanism of resistance in vivo. Methods: Nude mice were injected with KU812 Bcr-Abl+ human leukemic cells. After 1 day (no evident tumors), 8 days, or 15 days (tumors >1 g), mice were treated with STI571 (160 mg/kg every 8 hours). Cells recovered from relapsing animals were used for in vitro experiments. Statistical tests were two-sided. Results: Tumors regressed initially in all STI571-treated mice, but all mice treated 15 days after injection of tumor cells eventually relapsed. Relapsed animals did not respond to further STI571 treatment, and their Bcr-Abl kinase activity in vivo was not inhibited by STI571, despite high plasma concentrations of the drug. However, tumor cells from resistant animals were sensitive to STI571 in vitro, suggesting that a molecule in the plasma of relapsed animals may inactivate the drug. The plasma protein α1 acid glycoprotein (AGP) bound STI571 at physiologic concentrations in vitro and blocked the ability of STI571 to inhibit Bcr-Abl kinase activity in a dose-dependent manner. Plasma AGP concentrations were strongly associated with tumor load. Erythromycin competed with STI571 for AGP binding. When animals bearing large tumors were treated with STI571 alone or with a combination of STI571 and erythromycin, greater tumor reductions and better long-term tumor-free survival (10 of 12 versus one of 13 at day 180; P<.001) were observed after the combination treatment. Conclusion: AGP in the plasma of relapsed animals binds to STI571, preventing this compound from inhibiting the Bcr/Abl tyrosine kinase. Molecules such as erythromycin that compete with STI571 for binding to AGP may enhance the therapeutic potential of this dru

    Tractatus de electione canonica

    No full text
    Obra perteneciente al Fondo Antiguo de la Biblioteca de la USA
    corecore