380 research outputs found

    Delegitimizing by Procrastinating

    Get PDF

    Endothelial Cell Dysfunction in HIV-1 Infection

    Get PDF
    Human immunodeficiency virus type 1 (HIV-1) promotes a generalized immune activation that alters the physiology of cells that are not sensitive to viral infection. Endothelial cells (ECs) display heavy dysfunctions in HIV-1-seropositive (HIV+) patients that persist even in patients under successful combined antiretroviral therapy (cART). In vivo studies failed to demonstrate the presence of replicating virus in ECs suggesting that a direct role of the virus in vascular dysfunction is unlikely. This finding paves the way to the hypothesis of a key role of molecules released in the microenvironment by HIV-1-infected cells in sustaining aberrant EC function. Here we review the current understanding regarding the contribution of HIV-1 infection to vascular dysfunction. In particular, we argue that different HIV-1 proteins may play a key role in driving and sustaining inflammation and EC dysregulation, thus underlining the need to target them for therapeutic benefit

    Ergodicity in randomly perturbed quantum systems

    Get PDF
    The theoretical cornerstone of statistical mechanics is the ergodic assumption that all accessible configurations of a physical system are equally likely. Here we show how such property arises when an open quantum system is continuously perturbed by an external environment effectively observing the system at random times while the system dynamics approaches the quantum Zeno regime. In this context, by large deviation theory we analytically show how the most probable value of the probability for the system to be in a given state eventually deviates from the non-stochastic case when the Zeno condition is not satisfied. We experimentally test our results with ultra-cold atoms prepared on an atom chip.Comment: 6 pages, 5 figure

    Global Emergence of Colistin-Resistant Escherichia coli in Food Chains and Associated Food Safety Implications: A Review

    Get PDF
    Antimicrobial resistance in bacteria represents one of the most important challenges for public health worldwide. Human infections from antimicrobial-resistant bacteria can be transmitted from person to person, via the environment (especially in the hospital environment), or via handling or eating contaminated foods. Colistin is well known as a last-resort antibiotic for the treatment of human infections; a recent study performed in the People's Republic of China has revealed that colistin resistance is also conferred by the plasmid-mediated mcr-1 gene in Escherichia coli. After that discovery, further plasmid-mediated, colistin resistance genes have been detected. However, to date, only reports on E. coli carrying the mcr-1 gene (E. coli mcr-1+) in foodstuff are available. E. coli mcr-1+ has been isolated from food of animal origin and vegetables; this discovery has opened a debate among food safety experts. This review aims to provide a critical overview of the currently available scientific literature on the presence of the plasmid-mediated, colistin resistance gene E. coli mcr-1 in foodstuffs, focusing on the main implications and future perspectives for food safety

    PV reconfiguration systems: A technical and economic study

    Get PDF
    Dynamical electrical array reconfiguration strategies for grid-connected PV systems have been proposed as solution to improve energy production due to the mismatch effect of PV plants during partial shading conditions. Strategies are based on the use of dynamic connections between PV panels given by the employment of switches that allow for each panel the series, parallel or exclusion connections, physically changing the electrical connections between the related PV modules, consequentially modifying the layout of the plant. Usually the cost of the dynamic matrix is not taken into account. This novel work evaluates the economic advantages obtained by the use of reconfiguration strategies in PV systems, by taking into consideration the price of energy due to incentives in different European and non-European countries and correlates it with the employment of two types of reconfigurators, with different internal structures. For each of the incentives proposed by the different Countries, the main strength and weakness points of the possible investment are highlighted and critically analyzed. From this analysis, it can be stated that the adoption of reconfiguration systems, in certain cases, can be a very convenient solution

    Dietary supplements in neurological diseases and brain aging

    Get PDF
    A healthy diet shapes a healthy mind. Diet quality has a strong association with brain health. Diet influences the onset and consequences of neurological diseases, and dietary factors may influence mental health at individual and population level. The link between unhealthy diet, impaired cognitive function and neurodegenerative diseases indicates that adopting a healthy diet would ultimately afford prevention and management of neurological diseases and brain aging. Neurodegenerative diseases are of multifactorial origin and result in progressive loss of neuronal function in the brain, leading to cognitive impairment and motoneuron disorders. The so-called Mediterranean diet (MedDiet) with its healthy ingredients rich in antioxidant, anti-inflammatory, immune, neuroprotective, antidepressant, antistress and senolytic activity plays an essential role in the prevention and management of neurological diseases and inhibits cognitive decline in neurodegenerative diseases such as Alzheimer’s, Parkinson’s and Huntington’s diseases. The MedDiet also modulates the gut-brain axis by promoting a diversity of gut microbiota. In view of the importance of diet in neurological diseases management, this review focuses on the dietary components, natural compounds and medicinal plants that have proven beneficial in neurological diseases and for brain health. Among them, polyphenols, omega-3 fatty acids, B vitamins and several ayurvedic herbs have promising beneficial effects

    Internalization of the constitutively active arginine 1152-->glutamine insulin receptor occurs independently of insulin at an accelerated rate.

    Get PDF
    Signals controlling the insulin receptor endocytotic pathway have been investigated using the R1152Q insulin receptor mutant (M). This mutant receptor exhibits high levels of insulin-independent kinase activity, impaired autophosphorylation, and lack of an insulin stimulatory effect on both auto- and substrate phosphorylation. NIH-3T3 fibroblasts expressing M receptors displayed a 2.5-fold higher 125I-insulin internalization rate than wild type (WT) but lacked insulin-induced receptor internalization and down-regulation. Cell surface recycling of internalized receptors also occurred at a higher rate in M cells and was unaffected by insulin. Cell preincubation with 35 mM Tris, which inhibits the insulin receptor degradative route, elicited no effect on M receptor recycling but inhibited that of WT by 40%. In contrast, the energy depleter 2,4-dinitrophenol, which inhibits normal insulin receptor retroendocytosis, impaired M receptor recycling 4-fold more effectively than that of WT. The release of internalized intact 125I-insulin was 6-fold greater in M than in WT fibroblasts and was almost completely inhibited by dinitrophenol, whereas insulin degradation by M cells was 4-fold decreased as compared with WT. Thus, internalization and recycling of the constitutively active Gln1152 receptor kinase occur in the absence of autophosphorylation. However, tyrosine phosphorylation appears to be required for proper sorting of endocytosed insulin receptors

    Contributed Review: Review of thermal methods for space charge measurement

    Get PDF
    The space charge accumulation phenomenon has garnered great interest over the last two decades because of the increased use of direct current in high voltage electrical systems. In this context, a significant relevance has been achieved by the thermal methods, used for solid dielectrics. This paper presents a review of this non-destructive measurement system used for the measurement of space charge. The thermal pulse method, the thermal step method, and the laser intensity modulation method are described. For each configuration, the principle of operation, the thicknesses analyzed, and the spatial resolution are described, reporting also the main related application

    EFFETTI DEL CAMPO MAGNETICO ELF SU ALCUNE SPECIE VEGETALI DI INTERESSE ORNAMENTALE ED ECOLOGICO

    Get PDF
    Diversi studi riportati nella letteratura scientifica di riferimento, effettuati sia in vivo che in vitro, hanno evidenziato effetti positivi determinati dall’esposizione dei tessuti vegetali al campo magnetico EL

    Activation and mitochondrial translocation of protein kinase Cδ are necessary for insulin stimulation of pyruvate dehydrogenase complex activity in muscle and liver cells

    Get PDF
    In L6 skeletal muscle cells and immortalized hepatocytes, insulin induced a 2-fold increase in the activity of the pyruvate dehydrogenase (PDH) complex. This effect was almost completely blocked by the protein kinase C (PKC) delta inhibitor Rottlerin and by PKCdelta antisense oligonucleotides. At variance, overexpression of wild-type PKCdelta or of an active PKCdelta mutant induced PDH complex activity in both L6 and liver cells. Insulin stimulation of the activity of the PDH complex was accompanied by a 2.5-fold increase in PDH phosphatases 1 and 2 (PDP1/2) activity with no change in the activity of PDH kinase. PKCdelta antisense blocked insulin activation of PDP1/2, the same as with PDH. In insulin-exposed cells, PDP1/2 activation was paralleled by activation and mitochondrial translocation of PKCdelta, as revealed by cell subfractionation and confocal microscopy studies. The mitochondrial translocation of PKCdelta, like its activation, was prevented by Rottlerin. In extracts from insulin-stimulated cells, PKCdelta co-precipitated with PDP1/2. PKCdelta also bound to PDP1/2 in overlay blots, suggesting that direct PKCdelta-PDP interaction may occur in vivo as well. In intact cells, insulin exposure determined PDP1/2 phosphorylation, which was specifically prevented by PKCdelta antisense. PKCdelta also phosphorylated PDP in vitro, followed by PDP1/2 activation. Thus, in muscle and liver cells, insulin causes activation and mitochondrial translocation of PKCdelta, accompanied by PDP phosphorylation and activation. These events are necessary for insulin activation of the PDH complex in these cells
    • …
    corecore