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Dynamical electrical array reconfiguration strategies for grid-connected PV systems have been 

proposed as solution to improve energy production due to the mismatch effect of PV plants 

during partial shading conditions. Strategies are based on the use of dynamic connections 
between PV panels given by the employment of switches that allow for each panel the series, 

parallel or exclusion connections, physically changing the electrical connections between the 
related PV modules, consequentially modifying the layout of the plant. Usually the cost of the 
dynamic matrix is not taken into account. This novel work evaluates the economic advantages 

obtained by the use of reconfiguration strategies in PV systems, by taking into consideration the 
price of energy due to incentives in different European and non-European countries and 
correlates it with the employment of two types of reconfigurators, with different internal 

structures. For each of the incentives proposed by the different Countries, the main strength 
and weakness points of the possible investment are highlighted and critically analyzed. From this 
analysis, it can be stated that the adoption of reconfiguration systems, in certain cases, can be 

a very convenient solution.  
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Nomenclature 
 

DES  Dynamic Electrical Scheme  

I-V  Current-Voltage 

MPP  Maximum Power Point 

PS   Partial Shading  

PV  Photovoltaic  

 

 

1. Introduction 
 

One of the main goals of the international community is the reduction of the greenhouse gas 

emissions, replacing the traditional fossil fuels energy generation sources with renewable 

energy sources in the frame of a distributed generation. Such perspective is made possible 

by the use of power converters even more flexible and efficient in the management of the 

power flow in grids that are becoming smart-grids, including electric vehicles and co-

generation systems. With this aim, the European Union issued the Directive 2009/28/EC, 

also known as 20-20-20 Directive, which promotes, starting from the situation of the year 

1990, three targets to obtain by the year 2020: a 20% reduction of greenhouse gas 

emissions, a 20% increase of energy produced from renewable sources and a 20% of energy 

saving [1]. Obviously, an efficiency improvement of the technologies applied to renewable 

energy sources can help to obtain the three objectives. 

In this framework, the photovoltaic (PV) power generation plays an important and strategic 

role [2,3]. In fact, it is possible to state that: PV generation does not produce gas emissions, 
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except the ones due to their manufacturing; during their lifetime, PV panels generates much 

more energy than that required for their manufacturing; often PV plants can be installed in 

locations not usable for other applications, such as roofs; PV generation is one of the most 

economical approach to deliver energy in remote areas. However, there is a flip side, since, 

due to the equipment required, the PV power generation is more expensive than other 

sources. In order to minimising this problem, various countries are promoting the PV plant 

installations with subsidies or incentive tariffs, which could become competitive in the near 

future [4-11], increasing the efficiency of the PV plants and, consequently, reducing the 

cost of the generated power thanks to technical and technological improvements in the 

whole generation system [12-17]. The promotion of PV generation is also carried out 

because also the other renewable energy sources are affected by  some technical problems 

[18-19] and this requires the introduction of novel control techniques [20-27] for the correct 

management of the distributed energy sources.   

The paper proposes an approach aimed to enhance the productivity of the photovoltaic (PV) 

arrays, in particular reducing the power losses due to electrical mismatch effect, by using a 

device called PV array reconfigurator. 

Dynamical electrical array reconfigurator have been proposed as solution to recover energy 

production due to the mismatch effect of PV plants during partial shading (PS) conditions. 

Strategies use dynamic connections between PV panels, given by the employment of 

switches physically changing the electrical connections between the related PV modules, 

consequentially modifying the layout of the plant. In figure 1, a switch set allows for each 

panel the series, parallel or exclusion connections. 

 

 
Fig. 1. Use of switches for the reconfiguration of panels. In (a) the series configuration is realized, 

whereas in (b) the parallel connection and in (c) a possible exclusion are provided. 

 

The paper is divided in different paragraphs: session 2 is dedicated to the discussion of the 

mismatch problem; section 3 is devoted to performance of the PV system with shading; 

section 4 introduces the incentive policies in different Countries; section 5 evaluates the 

economic convenience of the employment of a reconfigurator; section 6 discusses on the 

different cost of reconfigurators; finally section 7 introduces the conclusions. 
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2. The mismatch problem 

 
Since each characteristic of a PV module differs from its rated value and varies within its 

tolerance limits, when various cells are connected in series and/or in parallel, their working 

point moves. As a consequence of this mismatch, the total power generated by a PV array is 

significantly less than the sum of the power outputs of the individual modules that work 

independently. Moreover, even if the modules had the same values of their characteristics, 

the mismatch effect would arise simply because of the partial or total shading of a single 

cell of the module, due to clouds, bird’s droppings, dirt falling, trees, neighbor’s houses, or 

the shadow of one solar array on the other. Moreover, this circumstance leads to 

nonlinearities in characteristics of the PV modules [28]. 

In many new applications, such as solar power plants, Building-Integrated Photovoltaic 

(BIPV), it is quite important to optimize the performances of the arrays under non-

homogeneous shading conditions. Because of the electrical characteristics of solar cells, the 

power losses are not proportional to the shadow, but they increase nonlinearly. 

In order to face these problems, in literature, various approaches to optimize the power 

output under non-optimal irradiance conditions have been recently proposed, adopting 

dynamic reconfiguration systems for PV modules interconnection [29-40]. To implement 

these optimization approaches, monitoring systems are needed in renewable energy 

applications to track the performances of the generation plant, collecting power production 

and performance data as well as weather conditions information [41-44]. However, to 

control efficiently the PV system, there is the need to measure accurately the characteristic 

of each module. In this way, it would be possible to track the working conditions of each 

module, recognizing faulty units [45-47] and preventing mismatch and partial shading 

conditions through suitable control actions [48-49]. 

References [50-51] deal with the power losses due to partial shading (PS). Fig.2 shows the 

power losses caused by PS. A light shadow reduces the power of the array from 1000 W to 

800W; if a panel is heavily shadowed, a bypass diode excludes the shaded panel and the 

voltage moves from 80 V to 50 V with another reduction of output power. Finally, if two 

bypass diodes are activated, voltage moves to 25 V and the array greatly reduces the 

generated power. 

 
 

Fig. 2. Shading, partial shading, and misleading losses for a photovoltaic array. Three levels of losses 

are present, depending on the lines of cells of the panel: when only one is shaded the voltage is 

higher, while for two or three, voltage is considerably reduced. 

 

The maximum available power does not equal the array maximum power without partial 

shading. The difference is the shading losses, which cannot be avoided. Moreover, such 

phenomenon can mislead MPPT algorithms. 
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The techniques for reducing partial shading losses could be grouped into the following 

categories [52]: 

• Distributed Maximum Power Point Tracker (DMPPT); 

• Multilevel inverters; 

• Photovoltaic array reconfiguration. 

Focusing on the last group, the existing state-of-the-art strategies for PV array reconfigu-

ration utilizing the “irradiance equalization” principle are extensively reviewed in [52-53].  

The reconfiguration strategy can be applied to two different typical situations. The first one 

is when fixed objects (i.e., chimneys) project their shadow onto a part of the plant. This is 

common for PV plants placed on the roof or integrated in a building (Fig.3), even if, 

installers usually avoid placing PV modules in these locations. 
 

 
 

Fig. 3. Partially shaded roof of a building. Different panels are shaded, global production is greatly 

reduced and investiment plan varies. 

 

Another situation of unpredictable shading derives from passing clouds. In this case, there 

is a distributed drop of irradiance above all the PV plant. Depending on the speed of the 

passing clouds, the irradiance conditions can change suddenly, causing a large reduction of 

the PV plant efficiency. Moreover, it is necessary to consider that, in case of failure of one 

or more modules, these can be automatically disconnected by the reconfigurable array.  

The shaded solar cells may work on the negative voltage region, becoming a resistive load 

and dissipating energy. Bypass diodes are sometimes parallel connected to the solar cells in 

order to protect them from damage. However, in most cases, just one diode is parallel-

connected to a group of solar cells [53] and this hides the potential output power of the 

array. While they are active, diodes can reach very high temperatures. 

 

3. PV system and Reconfigurator 

 

During the design phase, it is essential to predict the best exposure to solar radiation for PV 

modules. A wrong choice can seriously affect the energy output of the PV plant. The PV 

modules are more efficient when the incident solar radiation is perpendicular to their 

surface, the best roof orientation is usually southward. Moreover, the total absence of any 

sort of fixed obstacles, closely around the PV plant, should be satisfied. This happens 

because in a fixed PV plant, the shadows of such obstacles over one or more modules, 

could cause undesirable and persistent module PV power output reductions that 

undoubtedly would affect the performances of the whole string which the disadvantaged 

module belongs to. Unfortunately, in practical applications, the southward installation is not 

always practicable and even when it is possible, there can be many factors that can disturb 

the performances of the PV plant such as the presence of dormers, chimneys, satellite 

dishes, trees and so on. Fig.4 shows a possible scenario, in which a shadow overlaps 

different panels. The effect on a shadowed panel affects also the panels connected in 

parallel, since a reduction of a shadowed panel voltage entails a reduction of not shadowed 

ones and an increase of current in order to balance power. This increase of current is not 
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always possible, if the not shadowed panel works around its MPP, i.e. at 80 V in Fig.1, 

therfore any reduction of voltage reduces significantly the power. 

Another issue, which negatively jeopardize the plant production, is the damage of one or 

more modules. In all these adverse cases, a monitoring system, which is not limited to the 

measure of the decrease of produced energy, but also indicates the causes, could be useful. 

In these cases, a system that can remove the deteriorated module is desirable. The 

deployment of a modules reconfiguration technique can represent a smart solution for the 

maximization of a PV plant output power, since a reconfigurator can also provide the 

function to exclude the damaged modules. 

Fig.5 shows a PV plant on which a shadow, due to a pole, is projected. Each panel has three 

lines of cells and is connected to the reconfigurator, which, in turn, is connected to two 

channels inverter. The reconfigurator is set with two outputs. 

  

 

Fig. 4. Possible shadow projections in the analysed 

scenario. The moving shadow cuts different modules. 
 

  

Fig.5. PV reconfigurator scheme. Each 

panel is connected to the reconfigurator 

and a dynamic plant configuration can be 

achieved. 
 

Reconfiguration performances were tested with a prototype reconfigurator developed in the 

University of Palermo and employed on a twelve panels installation. The system acquires 

the state of every panel. In particular, voltage, current and temperature are collected by the 

twelve inputs.  Fig. 6 shows the experimental setup for which the algorithm was tested. 

Twelve eight years old panels (Conergy, PMMP 215 W, VMPP 28.27 V, IMPP 7.59 A, Voc 

36.37, Isc 8.21 A) were connected independently to the reconfigurator.  

When no shadow engages the plant, each panel shows the same behavior, and the 

reconfigurator creates its standard topology, that consist of two parallel identical strings of 

six modules in series. In order to test the system performance, various resistive loads were 

considered. Table 1 reports the electrical characteristics of these working conditions. 

 
Fig. 6 Experimental setup with 12 panels individually connected to the reconfigurator. 

 

Table 1: Electrical characteristics in different load conditions evaluated by reconfigurator 

 load A load B load C load D load E 

Voltage [V] 31.3 28.9 26.1 23.1 16.8 

Current [A] 1.9 4.0 6.0 7.0 7.4 

Power [W] 54.5 115.6 156.6 161.7 124.3 

String [W] 356.2 693.7 939.2 970.2 745.5 
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With the aim to test the reconfiguration algorithm, an artificial shadow was generated. Fig.7 

shows three shadow conditions onto one of the panels of a parallel string. Panel is made by 

6 orizonthal x 9 vertical cells; a single line is made by a series of 18 cells (2 x 9). If only 

one cell is shaded, all the line of 18 cells does not produce. The artificial shadow cuts one, 

two or three lines of cells, reducing the module and string performance. Each line 

interruption causes the operation of the bypass diode and the consequent voltage reduction 

of the panel. Let us indicate with V1-V5 the voltages of the five non-shadowed panel and 

with V6 the voltage of the shadowed one. The reconfigurator evaluates the power of each 

panel and reconfigures the panel connections into the string. 

 

  
 

Fig. 7 Shaded panel. Case 1: the minimum shadow can vary from 225 to 450 cm2, (one or two cells 

covered); case 2: shadow varies from 450 to 900 cm2; case 3 corresponds to the interruption of the 

panel. 

 

Table 2 summarizes the behavior of the system with and without shading. P1-P5 are the 

output powers of the panels that are not shadowed, while P6 is the power of the shadowed 

panel in all three cases and I is the current of the system in the cases taken into account. 
 

Table 2: Electrical characteristics of the string in different shadow conditions 

 Shadow 

condition 

V1-5 

[V] 

V6 

[V] 

I 

[A] 

P1-P5 

[W] 

P6 

[W] 

Pstring 

[W] 

lo
ad

 A
 Not shaded 31.3 31.3 1.9 54.5 54.5 356.2 

Case 1 31.6 20.2 1.6 50.5 32.3 285.1 

Case 2 31.8 9.0 1.2 38.1 10.8 201.6 

lo
ad

 B
  Not shaded 28.8 28.8 4.0 115.2 115.2 691.2 

Case 1 29.2 18.7 3.3 96.6 61.7 543.5 

Case 2 30.1 8.2 2.6 78.3 21.3 412.6 

lo
ad

 C
 Not shaded 26.1 26.1 6.0 156.6 156.6 939.6 

Case 1 27.7 17.1 5.0 138.5 85.5 778.0 

Case 2 29.1 7.4 4.2 122.2 31.1 642.2 

lo
ad

 D
 Not shaded 23.1 23.1 7.0 161.7 161.7 970.2 

Case 1 25.9 15.6 6.4 165.7 99.8 928.6 

Case 2 27.7 6.8 5.2 144.0 35.4 755.6 

lo
ad

 E
 Not shaded 16.8 16.8 7.4 124.3 124.3 745.9 

Case 1 16.8 11.0 7.4 124.3 81.4 703.0 

Case 2 16.8 4.2 7.4 124.3 31.1 652.6 

 

Fig. 8 shows the voltage-current and voltage-power profiles of the panel with three working 

lines of cells (blue curve), two working lines of cells (orange curve) and only one working 

line (grey curve). 

Without any shading, the working point is on the blue curve. If a line of cells is shaded, the 

working point moves from the blue to the orange curve, maintaining a similar current, but 

changing in terms of voltage. Furthermore, if the shadow covers two lines of cells, the 

working point moves from the blue curve to the grey curve, maintaining a similar current 
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and, once again, changing its voltage. From Fig. 8 it can be also noticed that a voltage 

variation entails new power conditions. 

The reconfigurator is able to regroup similar irradiated panels and/or exclude the highly shaded  

panels. In dependence of both the technology and the algorithm implemented into the 

reconfigurator, different working operations can occur: a simple and traditional 

reconfigurator can only exclude shaded panels, while a high-performance reconfigurator 

can relocate them on suitable dynamic arrays. 

Under reconfigured configuration, the increases of the obtained power are shown in Table 

3. From these data it can be stated that the reconfiguration system through the monitoring 

facility can also show the improvement due to the disconnection of shaded panels.  

 

     
 

Fig. 8 Interpolated V-I and P-V curves of the panel with different shadows.  

Blue: without shadow, Orange: with a shaded line, Gray: with two shaded lines. Points A, B, C, D, E 

are due to different loads. 

 

Table 3: Electrical characteristics in different loading conditions  

evaluated by reconfigurator for each panel 

 losscase1% losscase2% Reco [W] Loss rec% ΔP1% ΔP2% 

load A 20.0 43.4 297.3 16.7  +3.5 +26.9 

load B 21.4 40.3 576.0 16.7 +4.8 +23.7 

load C 17.2 31.6 783.0 16.7 +0.6 +15 

load D 4.3 22.2 808.5 16.7 -12.3 +5.6 

load E 5.7 12.5 621.6 16.7 -10.9 -4.1 

 

Fig. 9 shows the benefits of the employment of the reconfiguration technique: in case 1 and 

for the lower currents (load A-B-C) an increase of power is verified, while for higher 

currents (loads D-E) a decrease can be detected, as well as for case 2 (lower currents, loads 

A-B-C-D and higher current, load E). 

 
Fig. 9. Zones of convenience of the disconnection of partially shaded module. Green zone: exclusion 

of panel is convenient; Yellow zone: exclusion of panel can decrease the produced energy; Red zone: 

energy lost from the esclusion of panel is higher then the one recovered by the other panels.   
 

Fig. 7 show a further case, consisting in an entirely shadowed panel. In such case, a 

negative voltage of the shadowed panel affects the performance of the string. Each not 
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shaded panel varies its operating condition assuming a voltage slightly higher than the non-

perturbed condition. 

Table 4 shows the increase of power when a panel is totally shaded. The study of case 3 

shows that when the shadows cut in two parts the panel 6 (becoming a load), 

reconfiguration reduces always the loss of power. 

Case 3  shows the real performance of the reconfigurator. The MMP working  points are all  

taken  between loads C  and  D. By considering the overall behaviour of two shaded strings  

used simultaneously, a possible performance increase between 12% and 25% can be stated. 

It is now considered the possibility of placing in parallel connection partially obscured 

panels in order to ensure the maximum current of arrays. Thus, this feature requires a more 

evolved reconfigurator, whose current sum is equal to the current of the non-shadowed 

panels. 
 

Table 4. Electrical characteristics in different load conditions  

evaluated by reconfigurator for each panel 

 
Shadow 

condition 

V1-5 

[V] 

V6 

[V] 

I 

[A] 

P1-P5 

[W] 

P6  

[W] 

PString 

[W] 
Loss% ΔP3% 

lo
ad

 C
 Not shadow 26.1 26.1 6.0 156.6 156.6 939.6   

Case 3 26.7 -2.9 5.1 136.1 -14.8 665.7 -29.1  

reconfigurated 26.1 open 6.0 156.6  783.0 -16.7 +12.4 

lo
ad

 D
 Not shadow 23.1 23.1 7.0 161.1 161.1 970.2   

Case 3 23.7 -3.0 6.5 154.0 -19.5 750.7 -22.7  

reconfigurated 23.1 open 7.0 161.1  808.5 -16.7 +6.0 

lo
ad

 E
 Not shadow 16.8 16.8 7.4 124.3 124.3 745.9   

Case 3 17.4 -3.1 7.4 128.7 -21.5 620.8 -16.7  

reconfigurated 16.8 open 7.4 156.6  621.5 -16.7 0 

 

Table 5. Electrical characteristics of the string in different shadow conditions 

 
Shadow 

condition 

V1-5 

[V] 

V6-7 

[V] 

I 

[A] 

P1-P5 

[W] 

P6-7 

[W] 

Pstring 

[W] 

Loss

% 

V6//7  

[V] 

I6//7 

[A] 

P6-7 

[W] 

Pstring 

[W] 

ΔP 

% 

lo
ad

 C
 Not shaded 26.1 26.1 6.0 156.6 156.6 1096.0    156.6 1096.0  

Case 1 27.7 17.1 5.0 138.5 85.5 863.5 -21.2 19.3 6.0 60.0 903.3 +4.2 

Case 2 29.1 7.4 4.2 122.2 31.1 673.3 -38.5 6.2 6.0 36.1 909.2 +21.4 

lo
ad

 D
 Not shaded 23.1 23.1 7.0 161.7 161.7 1132.0    161.7 970.2  

Case 1 25.9 15.6 6.4 165.7 99.8 1028.0 -9.2 15.0 7.0 101.0 1010.0 -1.5 

Case 2 27.7 6.8 5.2 144.0 35.4 755.6 -33.2 5.0 7.0 36.3 881.1 +11.1 

 

As shown by Table 5, this feature is beneficial only when case 2 is considered. For a two 

arrays PV system, a possible increase of performance is about 20%.  

In order to perform an economic analysis, two reconfigurators will be taken into account: 

Type 1, which consists of a simple “exclude or not” feature with a cost of 500 € and Type 

2,which consists of the advanced feature of parallel scheme. For the economic analysis the 

increased power given by the reconfigurators will be taken as an increase of energy 

produced during the day. 

 

4. Policies of Incentives 
 

Italy 

The so called "Conto Energia" (C.E., [4-6]) has opened the opportunities of investment on 

PV systems along the Italian country. This policy, which has been introduced in 2005 and 

subsequently integrated in 2006, has changed significantly the way to encourage the owner 
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of a PV plant, providing opportunities and incentives for both the new installation and the 

energy production from photovoltaics. With respect to the dimensions of the PV plants, the 

incentives bought by the C.E. can vary in a significant way. However, the favorable climate 

of this Country and the long-term duration of the incentives (20 years) allows the owner of 

the PV system to have returned the related investment costs within a period of about ten 

years. As a matter of fact, for the first C.E. (2005), in just nine days the planned financed 

amount was already reached and the Italian Minister was forced to increase the incentive 

capacity from 100 MWp to 500 MWp. Then, several others C.E.s have been proposed, but 

the tariffs were considerably and progressively reduced.  

In order to better assess the economic capability of the investment, it is useful to recall the 

specific characteristics of the most recent C.E. and the current incentive system, which are 

described in the next paragraphs. 

 

Conto Energia V 

In 2012, July 5
th

, the Ministerial Decree defined the incentive program Conto Energia V 

[4], which has been legally introduced on August 27
th

 of the same year, covering an 

indicative annual financial incentive of 6.7 billion of euros. As for the previous programs, 

the Conto Energia V classifies PV systems into three main categories (subsequently divided 

into other two subcategories in dependence of their installation site): 

• Simple PV systems 

• Concentrated PV systems, where the sunlight is concentrated by means of optical 

systems on photovoltaic cells 

• Innovative or integrated PV systems, which use particular technologies to improve the 

production, such as movable panels 

In addition, C.E. V introduces two rates:  

• The all-inclusive tariff, consisting of an incentive for the amount of produced energy 

and then sold to the grid 

• The self-consumption tariff, which corresponds to an incentive for the amount of 

produced energy and then locally consumed. 

Moreover, as for the previous C.E.s, the incentive rates are still during for twenty years and 

vary in dependence on the type of system and the type of installation.  

Simple PV systems and plants integrated with innovative features, may give rise to 

particular incentive bonuses: by employing components made in the EU or in the EEA 

(European Economic Area), the bonus is equal to: 

• 20 € / MWh if the PV is activated no later than December 31
st
, 2013; 

• 10 € / MWh if the PV is activated no later than December 31
st
, 2014; 

• 5 € / MWh if the PV is activated after December 31
st
, 2014. 

Table 6 summarizes the feed-in-tariffs for a simple PV system installed on building, whose 

maximum power is less than 3 kW. It can be noticed that, in dependence on the activation 

of the system, the incentives significantly vary. 

 
Table 6. Incentive to production of a simple plant for C.E. V in different periods 

Semester 
I  

Sept. 2012 

Feb. 2012 

II 
Mar. 2013 

Aug. 2013 

III 
Sept. 2013 

Feb. 2014 

IV 
Mar. 2014 

Aug. 2014 

V  
Sept. 2014 

Feb. 2015 

All-inclusive 208 182 157 144 133 

Self- consumption 126 100 75 62 51 

 

Tax deduction for photovoltaic systems 

The policy of encouragement towards renewable energies in Italy has effectively ended 

together with the conclusion of C.E. V, on July 6
th
, 2013. On the other hand, the Italian 
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Revenue Agency, in its resolution 22/E of 02.04.2013, has officially confirmed the 

applicability of the tax deduction provided for building renovations, regarding the costs of 

purchase and installation of PVs on residential buildings.  

In order to benefit from the aforementioned tax deduction, the installation of the plant must 

be done primarily to meet the energy needs of the building. For a maximum amount of € 

48,000, the deductible expenditure is equal to 36%. 

In addition, two different services can be chosen by the owner of the PV plant: 

1. The “on-site exchange”, which compares the commercial value of the electricity 

furnished into the grid and the energy withdrawn. In addition, a reimbursement of 

expenses (incurred by the user to pick up electricity from the grid for the balance 

between fed and drawn energy) is provided. 

2. The “dedicated withdrawal”, which consists in the sale of electricity produced and fed 

into the grid, remunerated at a minimum guaranteed price, with a subsequent 

verification at the end of the year to determine adequate refinements (if the revenue 

from a zone time price exceeds the revenues from the guaranteed minimum price).  

Germany 

During the last years the German government has adopted the strategy for the nuclear exit 

and, at the same time, it has improved the German Renewable Energies Act (Erneuerbare-

Energien-Gesetz or EEG) by modifying some aspects of the Fixed feed-in Tariff (FiT) 

system, even if its basic structure has remained unchanged [7]. Under the terms of the EU 

Renewable Energy Directive (Directive 2009/28/EC), the 18% of the German gross final 

energy consumption must be provided by renewable energy source. In this country, despite 

its geographical location, the PV plants have a good income. Due to the high consumption, 

the investment in PVs is already cheap enough. The values of average consumption per 

capita, energy cost, incentives and production facility can be summarized as follows: 

• Average consumption per capita: 3,512 kWh/year; 

• Energy cost: € 0.33 /kWh; 

• Incentives: € 0.13 /kWh; 

• Production facility: 3120 kWh/year. 

France 

The consumption per capita in France is very high if compared with other countries 

(doubled in comparison with Germany), as well as the incentives [8]. However, but the 

energy price is relatively low (almost halved with respect to Germany) because of the high 

number of nuclear power plants spread along the Country. The previously mentioned data 

are hereinafter summarized: 

• Average consumption per capita: 6,343 kWh/year; 

• Energy cost: € 0.18 /kWh; 

• Incentives: € 0.28 /kWh; 

• Production facility: 3510 kWh/year. 

Spain 

Spain is one of the most affordable European Country in terms of PV investments, with 

incentive policies economically attractive [9]. 

• Average consumption per capita: 4,131 kWh/year; 

• Energy cost: € 0.28 /kWh; 

• Incentives: € 0.34 /kWh; 

• Production facility: 4980 kWh/year. 

Sweden 
The Swedish country has approached the PV production only in recent years. Hydropower 

is the main source for the production of energy [10]. Consumptions in Sweden are high in 

contrast to the yield of a plant, as shown by the following data: 

• Average consumption per capita: 14,177 kWh/year; 
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• Energy cost: € 0.10 /kWh; 

• Incentives: 35% of the cost system; 

• Production facility: 3090 kWh/year; 

Nigeria 
Nigeria is clearly the cheapest Country for investment in PV production [11]. In Nigeria, 

due to geographical location, a PV system produces a great amount of energy, almost 50% 

more of the previous evaluated production. But this is not the most important fact: the 

incentive is also the largest among those analysed, well above the European average. The 

combination of the two points makes the investment very attractive. 

• Average consumption per capita: 570 kWh/year; 

• Energy cost: € 0.17 /kWh; 

• Incentives: 0.50 € /kWh; 

• Production facility: 4810 kWh/year; 

 

5. Evaluation of the Economical Convenience 
 

The aim of this section is to establish the economical convenience of the reconfigurator for 

the PV system, by considering the year of the installation of the plant itself.  

This convenience is evaluated through the Net Present Value – NPV [54]. This method 

allows to obtain the result from a sum of cash flows actualized at time zero with a rate 

equal to the opportunity cost of the financial capital: 

∑
= +

+−=

n

k
k

k

i

C
CNPV

1
0

)1(
        (1) 

where C0 is the original investment (cost of the PV plants), Ck is the cash flow at the year k, 

i is the interest rate and k is the period of net cash flow. Therefore, a positive value of NPV 

indicates a convenience in terms of investment and vice versa. For its computing, the yearly 

data of the PV incomes and expenses, namely cash flows, are needed and their calculation 

is based by considering the interest rate MARR (Minimum Attractive Rate of Return). This 

parameter symbolizes the amount of assumed earnings for the investment. Thus, the NPV 

allows the estimation of the expected cash flow in a given period. Two investments can be, 

then, matched by comparing the NPV values obtained from them.  

The payback method is a method that allows the assessment of the time interval in which 

there is the recovery of the costs incurred, taking into account the discounting of cash 

flows. This method gives information related only to the recovery time and not what can be 

the possible gain. 
 

Italy 

The case study consists of a PV plant installed on January 2013 with the C.E. V incentive 

program, with an installation cost of 7000 € and assuming the average consumption of a 

family composed by four elements. 

Table 8 summarizes the monthly production of the PV system at 3% of efficiency reduction 

of the panels after the first year of operation is assumed, while for the subsequent years the 

power reduction due to aging is assumed equal to 0.5 % per annum. The effect of shading 

comes from the fourth year onwards, and it is assumed a 10% daily loss of energy, which 

can be compensated by reconfiguration strategies. 

The amount of energy self-consumed is calculated as the minimum between the energy 

produced and the energy consumed, while the amount of energy injected to the network is 

calculated as the difference between the energy produced and energy consumed. A positive 

result of this difference determines the cancellation of the related bill. Table 9 summarizes 

the production, the consumption and the transfer of energy of the proposed system. 
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Table 7. Average monthly consumption for 4 members family  

Two-monthly consumption 

Bimestrial Dec-Jan Feb-Mar Apr-May Jun-Jul Aug-Sep Oct-Nov Total year 

kWh 395,00 386,00 375,00 395,00 677,00 394,00 2.622,00 

€ 73,73 71,15 66,87 71,61 161,24 72,78 517,38 

 
Table 8. Production on the first year, [kWh] 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total 

248,56 317,16 370,49 422,92 547,84 543,75 576,95 560,62 390,09 287,84 281,28 245,91 4.793,41 

 

Table 9. Production, consumption and transfer of energy, [kWh] 

Year Production Consumption 
Self-

consumption 
Transfer 

1 4.793,41 2.622 2.622 2.171,41 

2 4.621,88 2.622 2.622 1.999,88 

3 4.138,89 2.622 2.622 1.516,89 

4 4.118,20 2.622 2.622 1.496,20 

5 4.097,61 2.622 2.622 1.475,61 

6 4.077,12 2.622 2.622 1.455,12 

7 4.056,73 2.622 2.622 1.434,73 

8 4.036,45 2.622 2.622 1.414,45 

9 4.016,27 2.622 2.622 1.394,27 

10 3.996,19 2.622 2.622 1.374,19 

11 3.976,21 2.622 2.622 1.354,21 

12 3.956,33 2.622 2.622 1.334,33 

13 3.936,54 2.622 2.622 1.314,54 

14 3.916,86 2.622 2.622 1.294,86 

15 3.897,28 2.622 2.622 1.275,28 

16 3.877,79 2.622 2.622 1.255,79 

17 3.858,40 2.622 2.622 1.236,40 

18 3.839,11 2.622 2.622 1.217,11 

19 3.819,91 2.622 2.622 1.197,91 

20 3.800,81 2.622 2.622 1.178,81 

 

Afterwards, an entry-exit budget is created and shown in Table 10, by taking into account 

the tariffs provided by the specified period. This table summarizes, for the entry budgets, 

the incentive for self-consumption (A.C.), the energy fed into the grid (out) and the 

advantage of no bills. For the exit budgets, cost of the plant and maintenance costs are 

taken into account. For a plant build in the first semester of C.E. V (see table 6), FiT is 208 

€/MWh, self consumption is 126 €/MWh. 

In this study it is assumed that the owner of the plant, because of the reduction in 

production of the PV plant due to shading occurring during the fourth year, begins the 

adoption of the reconfigurator during the fifth year. From the fifth year, an output amount 

ranging from  500 € to 1000 € is considered. Two different prices are used in order to 

simulate different business choices and different performances of the reconfigurator.  

The payback time is reached between the 7
th
 and the 8

th
 year for Type 1 (exclude-or-not 

reconfigurator, 500 € of overall cost, recover 10%) and the increase of NPV (considering 

the cash flow without reconfigurator) is about 443 €. For Type 2 (parallel scheme 
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reconfigurator, cost 1000€, recover 20%) the payback is reached between the 8
th

 and 9
th

 

year and the increase of NPV is 886 €. 

By considering a plant build in the second semester of C.E. V, FiT is 182 €/MWh, the self 

consumption is equal to 100 €/MWh. The payback time is reached between the 9
th
 and 10

th
 

year for Type 1, whereas the increase of NPV is about 338€. For Type 2 the increase of 

NPV is equal to 676€. 

In the case of the tax deduction, which corresponds to the recent policy in Italy, the NPV 

becomes negative. 

 
Table 10. Economic balance, [€] 

 ENTRY  EXIT 

Year A.C. Out No Bill Total  Bill Plant Man Total 

0 0 0 0 0  0 7000 0 7000 

1 330 447 517 1294  0 0 100 100 

2 330 416 517 1264  0 0 100 100 

3 330 315 517 1163  0 0 100 100 

… … … … …  … … … … 

20 330 245 517 1093  0 0 100 100 

 
Table 11. Cash flow with €500 reconfigurator 

Year Cash Flow 
Discounted 

Cash Flow 

Cumulative 

Cash Flow 

0 -7.000 -7.000 -7.000 

1 1.199 1.145 -5.618 

5 1149  514 -2398 

8 1135 782 73 

… … … … 

20 1081 426 6934 

 

Germany 

The scenario is similar to previous case: a 7000 € PV system has been considered, whereas 

the maintenance has been set to 100 €/year, the energy reduction starts at 4
th

 year and the 

reconfigurator is employed in the 5
th

 year. 

In Germany, despite the geographical location, the PV plants have good incomes. More in 

detail, due to the high consumption, the investment in PV systems is already cheap, even 

without the reconfigurator (NPV>0). However, the installation of the device is quite 

affordable with a substantial increase in the NPV: Type 1 has an increase of 400€, while 

Type 2 has an increase of 900€. 

France 

Even if the simulated scenario is the same of the previous cases, the choice of a 7000€ PV 

system is not convenient, since the production is lower than the need. However, the use of 

Type 1 increases the NPV of 134€, while Type 2 increases the NPV of 269€. 

 

 

Spain 
For the simulated scenario the application of reconfiguration techniques increases the 

convenience of investment in Spain: the NPV increases for both Type 1 and Type 2 of 

1500€ and 2800€, respectively. 
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Sweden 

From Table 12 it appears clear that in Sweden, the proposed investment is not convenient: 

the NPV is decreased of 110€ for Type 1 and 220€ for Type 2. 
 

Nigeria 

Due to its geographical location, in Nigeria the investment in PV production is very 

attractive: low number of consumers and the surplus energy is well paid. Therefore, the use 

of reconfiguration strategies extremely increases incomes. As shown in Table 12, for type 1 

the NPV is increased by 1300€, while for type 2 it is increased by 2300€. 

 

6. Results and Discussions 
Reconfiguration systems are complex devices capable to perform several functions, e.g, the 

real-time measurement of voltage, current and temperature involved in the PV system and 

the optimal reconfiguration of the related modules. 

A reconfigurator internally contains the following elements: microprocessor, voltmeters 

and switches. The quality of a reconfigurator, although it is implicitly linked to the 

algorithm employed in the microprocessor, from the hardware point of view is a function of 

the number of switches. 

Fig.10 shows a very simple set of switches, panels that can be putted in series or parallel 

but for a selected path. Only adjacent panels can be put in parallel, as in the transition from 

the diagram (a) in diagram (b), in which PV1 and PV2 from the series are put in parallel. It 

would not be possible to put in parallel PV1 and PV3, leaving PV2 in series. 

In [55] an adaptive matrix is proposed, as shown in Fig.11. A couple of switches enables 

the parallel (Switch parallel up and down), whereas a second couple enables the series 

(switch series and bypass). The used switches set are 4 x panel, but each bus requires two 

switches to connect the PV array with the inverter and the dc/dc converter. For a system 

with 16 panels the required switches are 68. 

In [56] a complex mosfet switching matrix has been proposed and here reported in Fig.12.  

The number of switches in the switching network is equal to: 

(m*n) + ((m*n) -1)*(2+ (m*n))/2, 

where m and n are the number of the panels in a rectangular area. For a 4 x 4 panel system, 

switches are 151. Obviously, by comparing the two structures, it is possible to state that a 

more performing system can recover a greater amount of energy, but if the number of 

switches is too high, the cost of reconfigurator same can not be recovered. 

 
Fig. 10. Use of switches for the reconfiguration of panels. In (a) the series configuration of PV1, PV2 

and PV3 is realized. In (b) the parallel connection of PV1 and PV2 is achieved. 
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Fig. 11. Switching matrix proposed in [55]. 

 
Fig. 12. Switching matrix proposed in [56]. 

 

An expensive reconfigurator (type 2) is capable to perform the previously mentioned 

functions in a relatively fast manner, detecting also the possible working points of the panel 

with accordance to its irradiation and managing the placement of each panel in a dynamic 

array. In addition, the tracking of the operating characteristic requires the use of robust 

elements. Due to these aspects, type 2 is a relatively expensive device, with inner structure 

closer to the one presented in [56]. 

On the contrary, type 1 does not possess sophisticated performances. As a matter of fact, 

the mode of action, only if three lines are blanked, it is the only operation that has proven to 

have a 100% success of increasing the power in the cases studied respect the non-

intervention. The presence of a completely shaded panel is manifested by a negative 

reading of the voltage on the diode by-pass, due to the passage of the current of the string. 

The panels are inserted in series in the array, the exclusion of a panel does not require the 

use of a complex multiplexer, but of simple couple of switches such Spu and Spd of Fig. 
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11. In this way the reconfigurators can assume different prices depending on the type of 

elements they contain. In the following table the success of insertion in the different 

markets, based on the cost and type, and the possibility to replace the reconfigurator after 

ten years, is summarized. 

 
Table 12. NPV in different market and at different prices 

  Type 1  Type 2 

Country cost[€] 250 500 1000 2x500  500 1000 1500 2x1000 

Italy 

N
P

V
 [

€
] 

641 443 47 182  1282 886 489 364 

Germany 667 468 72 219  1300 937 540 439 

France 332 134 -262 -115  665 269 -128 -229 

Spain 1728 1530 1134 1281  3087 2690 2294 2193 

Sweden 84 -144 -510 -363  168 -228 -624 -726 

Nigeria 1565 1367 971 1118  3131 2735 2338 2237 

 

Table 12 shows the result of a use of a reconfigurator. The two type of reconfigurator are 

proposed, by considering the inner logic with mosfet (cheaper) or solid state relay (more 

expensive), prices may vary between a minimum and a maximum. It has also considered 

the case in which a reconfigurator can be replaced during the life of the PV system. In the 

absence of incentive of energy produced, as in the case of Sweden, the reconfigurator fails 

to repay. In the other Countries there is less advantage (France, Italy, Germany), while in 

Spain and Nigeria the the installation of a reconfigurator is convenient. In [57] the Bulgaria, 

Romania, Greece and Croatia cases can be found. 

  

7. Conclusions 

 
This paper has presented a discussion on the economic convenience of the application of 

reconfiguration systems for photovoltaic plants, considering the incentives in different 

countries. The goal is to understand if the object reconfigurator is able to pay for itself and 

also create an economic increase. The technical aspects in the increase of power due to the 

intervention of reconfigurator have been studied. The performance of two different 

reconfigurators, namely type 1 and 2, have been evaluated for different shading conditions 

and with different cases of study. A discussion on the strength and weakness points of two 

types of reconfigurators have been presented, by introducing the inner structure of 

reconfigurators, which is directly related to the cost of the object. The best performances of 

the reconfigurators have been acquired in fully shading condition: in this case, energy 

losses are recovered and they have been evaluated by a positive economic point of view. 

From the described results obtained by analysing the incentive policies of six countries, the 

reasonable market prices of the device have been traced, highlighting that the adoption of 

reconfiguration systems can be often a convenient solution. Reconfigurators are useful for 

Italian, German Spanish and Nigerian markets, unuseful for French and Sweden ones. 
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