1,216 research outputs found

    Relationship between resistivity and specific heat in a canonical non-magnetic heavy fermion alloy system: UPt_5-xAu_x

    Full text link
    UPt_(5-x)Au_x alloys form in a single crystal structure, cubic AuBe_5-type, over a wide range of concentrations from x = 0 to at least x = 2.5. All investigated alloys, with an exception for x = 2.5, were non-magnetic. Their electronic specific heat coefficient γ\gamma varies from about 60 (x = 2) to about 700 mJ/mol K^2 (x = 1). The electrical resistivity for all alloys has a Fermi-liquid-like temperature variation, \rho = \rho_o + AT^2, in the limit of T -> 0 K. The coefficient A is strongly enhanced in the heavy-fermion regime in comparison with normal and transition metals. It changes from about 0.01 (x = 0) to over 2 micro-ohm cm/K^2 (x = 1). A/\gamma^2, which has been postulated to have a universal value for heavy-fermions, varies from about 10^-6 (x = 0, 0.5) to 10^-5 micro-ohm cm (mol K/mJ)^2 (x > 1.1), thus from a value typical of transition metals to that found for some other heavy-fermion metals. This ratio is unaffected, or only weakly affected, by chemical or crystallographic disorder. It correlates with the paramagnetic Curie-Weiss temperature of the high temperature magnetic susceptibility.Comment: 5 pages, 5 eps figures, RevTe

    In-beam test of the TwinTPC at FRS

    Get PDF

    Specific heat of Ce_{0.8}La_{0.2}Al_{3} in magnetic fields: a test of the anisotropic Kondo picture

    Full text link
    The specific heat C of Ce_{0.8}La_{0.2}Al_{3} has been measured as a function of temperature T in magnetic fields up to 14 T. A large peak in C at 2.3 K has recently been ascribed to an anisotropic Kondo effect in this compound. A 14-T field depresses the temperature of the peak by only 0.2 K, but strongly reduces its height. The corresponding peak in C/T shifts from 2.1 K at zero field to 1.7 K at 14 T. The extrapolated specific heat coefficient C/T(T->0) increases with field over the range studied. We show that these trends are inconsistent with the anisotropic Kondo model.Comment: 4 pages, 5 figures, ReVTeX + eps

    Radiation of Quantized Black Hole

    Full text link
    The maximum entropy of a quantized surface is demonstrated to be proportional to the surface area in the classical limit. The general structure of the horizon spectrum and the value of the Barbero-Immirzi parameter are found. The discrete spectrum of thermal radiation of a black hole fits naturally the Wien profile. The natural widths of the lines are very small as compared to the distances between them. The total intensity of the thermal radiation is calculated.Comment: 11 pages; few comments and a reference added; one more reference and a comment on it added; a note added that the natural widths of the lines are very small as compared to the distances between the

    On the Shear Instability in Relativistic Neutron Stars

    Full text link
    We present new results on instabilities in rapidly and differentially rotating neutron stars. We model the stars in full general relativity and describe the stellar matter adopting a cold realistic equation of state based on the unified SLy prescription. We provide evidence that rapidly and differentially rotating stars that are below the expected threshold for the dynamical bar-mode instability, beta_c = T/|W| ~ 0.25, do nevertheless develop a shear instability on a dynamical timescale and for a wide range of values of beta. This class of instability, which has so far been found only for small values of beta and with very small growth rates, is therefore more generic than previously found and potentially more effective in producing strong sources of gravitational waves. Overall, our findings support the phenomenological predictions made by Watts, Andersson and Jones on the nature of the low-T/|W|.Comment: 20 pages; accepted to the Classical and Quantum Gravity special issue for MICRA200

    A toy model of open membrane field theory in constant 3-form flux

    Get PDF
    Based on an explicit computation of the scattering amplitude of four open membranes in a constant 3-form background, we construct a toy model of the field theory for open membranes in the large C field limit. It is a generalization of the noncommutative field theories which describe open strings in a constant 2-form flux. The noncommutativity due to the B-field background is now replaced by a nonassociative triplet product. The triplet product satisfies the consistency conditions of lattice 3d gravity, which is inherent in the world-volume theory of open membranes. We show the UV/IR mixing of the toy model by computing some Feynman diagrams. Inclusion of the internal degree of freedom is also possible through the idea of the cubic matrix.Comment: 31 pages, latex, 2 eps figure

    Background independent quantizations: the scalar field II

    Get PDF
    We are concerned with the issue of quantization of a scalar field in a diffeomorphism invariant manner. We apply the method used in Loop Quantum Gravity. It relies on the specific choice of scalar field variables referred to as the polymer variables. The quantization, in our formulation, amounts to introducing the `quantum' polymer *-star algebra and looking for positive linear functionals, called states. Assumed in our paper homeomorphism invariance allows to derive the complete class of the states. They are determined by the homeomorphism invariant states defined on the CW-complex *-algebra. The corresponding GNS representations of the polymer *-algebra and their self-adjoint extensions are derived, the equivalence classes are found and invariant subspaces characterized. In the preceding letter (the part I) we outlined those results. Here, we present the technical details.Comment: 51 pages, LaTeX, no figures, revised versio

    Quantized Black Holes, Their Spectrum and Radiation

    Full text link
    Under quite natural general assumptions, the following results are obtained. The maximum entropy of a quantized surface is demonstrated to be proportional to the surface area in the classical limit. The general structure of the horizon spectrum is found. The discrete spectrum of thermal radiation of a black hole Under quite natural general assumptions, the following results are obtained. The maximum entropy of a quantized surface is demonstrated to be proportional to the surface area in the classical limit. The general structure of the horizon spectrum is found. The discrete spectrum of thermal radiation of a black hole fits the Wien profile. The natural widths of the lines are much smaller than the distances between them. The total intensity of the thermal radiation is estimated. In the special case of loop quantum gravity, the value of the Barbero -- Immirzi parameter is found. Different values for this parameter, obtained under additional assumption that the horizon is described by a U(1) Chern -- Simons theory, are demonstrated to be in conflict with the firmly established holographic bound.Comment: 15 pages, content of few talks given at conferences this summe

    Discovery and Cross-Section Measurement of Neutron-Rich Isotopes in the Element Range from Neodymium to Platinum at the FRS

    Get PDF
    With a new detector setup and the high-resolution performance of the fragment separator FRS at GSI we discovered 57 new isotopes in the atomic number range of 60Z78\leq Z \leq 78: \nuc{159-161}{Nb}, \nuc{160-163}{Pm}, \nuc{163-166}Sm, \nuc{167-168}{Eu}, \nuc{167-171}{Gd}, \nuc{169-171}{Tb}, \nuc{171-174}{Dy}, \nuc{173-176}{Ho}, \nuc{176-178}{Er}, \nuc{178-181}{Tm}, \nuc{183-185}{Yb}, \nuc{187-188}{Lu}, \nuc{191}{Hf}, \nuc{193-194}{Ta}, \nuc{196-197}{W}, \nuc{199-200}{Re}, \nuc{201-203}{Os}, \nuc{204-205}{Ir} and \nuc{206-209}{Pt}. The new isotopes have been unambiguously identified in reactions with a 238^{238}U beam impinging on a Be target at 1 GeV/u. The isotopic production cross-section for the new isotopes have been measured and compared with predictions of different model calculations. In general, the ABRABLA and COFRA models agree better than a factor of two with the new data, whereas the semiempirical EPAX model deviates much more. Projectile fragmentation is the dominant reaction creating the new isotopes, whereas fission contributes significantly only up to about the element holmium.Comment: 9 pages, 4 figure

    Energy and directional signatures for plane quantized gravity waves

    Get PDF
    Solutions are constructed to the quantum constraints for planar gravity (fields dependent on z and t only) in the Ashtekar complex connection formalism. A number of operators are constructed and applied to the solutions. These include the familiar ADM energy and area operators, as well as new operators sensitive to directionality (z+ct vs. z-ct dependence). The directionality operators are quantum analogs of the classical constraints proposed for unidirectional plane waves by Bondi, Pirani, and Robinson (BPR). It is argued that the quantum BPR constraints will predict unidirectionality reliably only for solutions which are semiclassical in a certain sense. The ADM energy and area operators are likely to have imaginary eigenvalues, unless one either shifts to a real connection, or allows the connection to occur other than in a holonomy. In classical theory, the area can evolve to zero. A quantum mechanical mechanism is proposed which would prevent this collapse.Comment: 54 pages; LaTe
    corecore