35 research outputs found

    Multicomponent Gas Diffusion in Porous Electrodes

    Full text link
    Multicomponent gas transport is investigated with unprecedented precision by AC impedance analysis of porous YSZ anode-supported solid oxide fuel cells. A fuel gas mixture of H2-H2O-N2 is fed to the anode, and impedance data are measured across the range of hydrogen partial pressure (10-100%) for open circuit conditions at three temperatures (800C, 850C and 900C) and for 300mA applied current at 800C. For the first time, analytical formulae for the diffusion resistance (Rb) of three standard models of multicomponent gas transport (Fick, Stefan-Maxwell, and Dusty Gas) are derived and tested against the impedance data. The tortuosity is the only fitting parameter since all the diffusion coefficients are known. Only the Dusty Gas model leads to a remarkable data collapse for over twenty experimental conditions, using a constant tortuosity consistent with permeability measurements and the Bruggeman relation. These results establish the accuracy of the Dusty Gas model for multicomponent gas diffusion in porous media and confirm the efficacy of electrochemical impedance analysis to precisely determine transport mechanisms

    CD8+ T cell concentration determines their efficiency in killing cognate antigen–expressing syngeneic mammalian cells in vitro and in mouse tissues

    Get PDF
    We describe a quantitative model for assessing the cytolytic activity of antigen-specific CD8+ T cells in vitro and in vivo in which the concentration of antigen-specific CD8+ T cells determines the efficiency with which these cells kill cognate antigen–expressing melanoma cells in packed cell pellets, in three-dimensional collagen-fibrin gels in vitro, and in established melanomas in vivo. In combination with a clonogenic assay for melanoma cells, collagen-fibrin gels are 4,500–5,500-fold more sensitive than the packed cell pellet–type assays generally used to measure CD8+ T cell cytolytic activity. An equation previously used to describe neutrophil bactericidal activity in vitro and in vivo also describes antigen-specific CD8+ T cell–mediated cytolysis of cognate antigen-expressing melanoma cells in collagen-fibrin gels in vitro and in transplanted tumors in vivo. We have used this equation to calculate the critical concentration of antigen-specific CD8+ T cells, which is the concentration of these cells required to hold constant the concentration of a growing population of cognate antigen-expressing melanoma cells. It is ∼3.5 × 105/ml collagen-fibrin gel in vitro and ∼3 × 106/ml or /g melanoma for previously published studies of ex vivo–activated adoptively transferred tumor antigen–specific CD8+ T cell killing of cognate antigen–expressing melanoma cells in established tumors in vivo. The antigen-specific CD8+ T cell concentration required to kill 100% of 2 × 107/ml cognate antigen-expressing melanoma cells in collagen fibrin gels is ≥107/ml of gel

    Real-Time Visualization and Quantitation of Vascular Permeability In Vivo: Implications for Drug Delivery

    Get PDF
    The leaky, heterogeneous vasculature of human tumors prevents the even distribution of systemic drugs within cancer tissues. However, techniques for studying vascular delivery systems in vivo often require complex mammalian models and time-consuming, surgical protocols. The developing chicken embryo is a well-established model for human cancer that is easily accessible for tumor imaging. To assess this model for the in vivo analysis of tumor permeability, human tumors were grown on the chorioallantoic membrane (CAM), a thin vascular membrane which overlays the growing chick embryo. The real-time movement of small fluorescent dextrans through the tumor vasculature and surrounding tissues were used to measure vascular leak within tumor xenografts. Dextran extravasation within tumor sites was selectively enhanced an interleukin-2 (IL-2) peptide fragment or vascular endothelial growth factor (VEGF). VEGF treatment increased vascular leak in the tumor core relative to surrounding normal tissue and increased doxorubicin uptake in human tumor xenografts. This new system easily visualizes vascular permeability changes in vivo and suggests that vascular permeability may be manipulated to improve chemotherapeutic targeting to tumors

    Circulating protein biomarkers of pharmacodynamic activity of sunitinib in patients with metastatic renal cell carcinoma: modulation of VEGF and VEGF-related proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sunitinib malate (SUTENT<sup>®</sup>) is an oral, multitargeted tyrosine kinase inhibitor, approved multinationally for the treatment of advanced RCC and of imatinib-resistant or – intolerant GIST. The purpose of this study was to explore potential biomarkers of sunitinib pharmacological activity via serial assessment of plasma levels of four soluble proteins from patients in a phase II study of advanced RCC: VEGF, soluble VEGFR-2 (sVEGFR-2), placenta growth factor (PlGF), and a novel soluble variant of VEGFR-3 (sVEGFR-3).</p> <p>Methods</p> <p>Sunitinib was administered at 50 mg/day on a 4/2 schedule (4 weeks on treatment, 2 weeks off treatment) to 63 patients with metastatic RCC after failure of first-line cytokine therapy. Predose plasma samples were collected on days 1 and 28 of each cycle and analyzed via ELISA.</p> <p>Results</p> <p>At the end of cycle 1, VEGF and PlGF levels increased >3-fold (relative to baseline) in 24/54 (44%) and 22/55 (40%) cases, respectively (P < 0.001). sVEGFR-2 levels decreased ≥ 30% in 50/55 (91%) cases and ≥ 20% in all cases (P < 0.001) during cycle 1, while sVEGFR-3 levels were decreased ≥ 30% in 48 of 55 cases (87%), and ≥ 20% in all but 2 cases. These levels tended to return to near-baseline after 2 weeks off treatment, indicating that these effects were dependent on drug exposure. Overall, significantly larger changes in VEGF, sVEGFR-2, and sVEGFR-3 levels were observed in patients exhibiting objective tumor response compared with those exhibiting stable disease or disease progression (P < 0.05 for each analyte; analysis not done for PlGF).</p> <p>Conclusion</p> <p>Sunitinib treatment in advanced RCC patients leads to modulation of plasma levels of circulating proteins involved in VEGF signaling, including soluble forms of two VEGF receptors. This panel of proteins may be of value as biomarkers of the pharmacological and clinical activity of sunitinib in RCC, and of angiogenic processes in cancer and other diseases.</p

    Doxorubicin and paclitaxel enhance the antitumor efficacy of vaccines directed against HER 2/neu in a murine mammary carcinoma model

    Get PDF
    INTRODUCTION: The purpose of the present study was to determine whether cytotoxic chemotherapeutic agents administered prior to immunotherapy with gene vaccines could augment the efficacy of the vaccines. METHODS: Mice were injected in the mammary fat pad with an aggressive breast tumor cell line that expresses HER2/neu. The mice were treated 3 days later with a noncurative dose of either doxorubicin or paclitaxel, and the following day with a gene vaccine to HER2/neu. Two more doses of vaccine were given 14 days apart. Two types of gene vaccines were tested: a plasmid vaccine encoding a self-replicating RNA (replicon) of Sindbis virus (SINCP), in which the viral structural proteins were replaced by the gene for neu; and a viral replicon particle derived from an attenuated strain of Venezuelan equine encephalitis virus, containing a replicon RNA in which the Venezuelan equine encephalitis virus structural proteins were replaced by the gene for neu. RESULTS: Neither vaccination alone nor chemotherapy alone significantly reduced the growth of the mammary carcinoma. In contrast, chemotherapy followed by vaccination reduced tumor growth by a small, but significant amount. Antigen-specific CD8(+ )T lymphocytes were induced by the combined treatment, indicating that the control of tumor growth was most probably due to an immunological mechanism. The results demonstrated that doxorubicin and paclitaxel, commonly used chemotherapeutic agents for the treatment of breast cancer, when used at immunomodulating doses augmented the antitumor efficacy of gene vaccines directed against HER2/neu. CONCLUSIONS: The combination of chemotherapeutic agents plus vaccine immunotherapy may induce a tumor-specific immune response that could be beneficial for the adjuvant treatment of patients with minimal residual disease. The regimen warrants further evaluation in a clinical setting

    Estrogen regulation of apoptosis: how can one hormone stimulate and inhibit?

    Get PDF
    The link between estrogen and the development and proliferation of breast cancer is well documented. Estrogen stimulates growth and inhibits apoptosis through estrogen receptor-mediated mechanisms in many cell types. Interestingly, there is strong evidence that estrogen induces apoptosis in breast cancer and other cell types. Forty years ago, before the development of tamoxifen, high-dose estrogen was used to induce tumor regression of hormone-dependent breast cancer in post-menopausal women. While the mechanisms by which estrogen induces apoptosis were not completely known, recent evidence from our laboratory and others demonstrates the involvement of the extrinsic (Fas/FasL) and the intrinsic (mitochondria) pathways in this process. We discuss the different apoptotic signaling pathways involved in E2 (17β-estradiol)-induced apoptosis, including the intrinsic and extrinsic apoptosis pathways, the NF-κB (nuclear factor-kappa-B)-mediated survival pathway as well as the PI3K (phosphoinositide 3-kinase)/Akt signaling pathway. Breast cancer cells can also be sensitized to estrogen-induced apoptosis through suppression of glutathione by BSO (L-buthionine sulfoximine). This finding has implications for the control of breast cancer with low-dose estrogen and other targeted therapeutic drugs

    On the mechanism of Mn(II)-doping in Scandia stabilized zirconia electrolytes

    Get PDF
    Cubic Scandia-stabilized zirconia (ScSZ) is an attractive electrolyte material for solid oxide cells due to its significant ionic conductivity, provided that the phase transition to its rhombohedral polymorph upon cooling is suppressed. The latter is achieved with addition of a secondary co-dopant, albeit it may be at the detriment of its ionic conductivity Here, we thoroughly investigate how MnO2 (0.5–10 mol%) as a co-dopant impacts on the sinterability, thermal expansion, crystal structure and ionic conductivity of ZrO2 doped with 10 mol% Scandia (10ScSZ), and we provide new insight on the chemistry of dissolved manganese in the fluorite lattice. Reactive sintering of 2 mol% MnO2 mixed with 10ScSZ enables to produce dense electrolyte with significant reduction of the peak sintering temperature and stabilisation of the cubic structure down to room temperature. Combined density functional theory and X-ray photoelectron spectroscopy analyses reveal that manganese predominantly enters the structure as Mn2+ during reactive sintering, with a prevalence of higher valence states at the surface and grain boundaries. The highest oxide ion conductivity is achieved for 2 mol% doped 10ScSZ (120 mScm−1 at 800 °C) and it decreases with increasing Mn concentration. For all compositions, the bulk conductivity remains independent of pO2 – corroborating a limited electronic conductivity contribution from Mn-doping. The grain boundary conductivity is found to decrease with sintering time and pO2, which is attributed to the chemistry and concentration of segregated manganese at the surface and grain boundaries, yielding depletion of oxygen vacancies in the space charge layer.publishedVersio

    On the mechanism of Mn(II)-doping in Scandia stabilized zirconia electrolytes

    No full text
    Cubic Scandia-stabilized zirconia (ScSZ) is an attractive electrolyte material for solid oxide cells due to its significant ionic conductivity, provided that the phase transition to its rhombohedral polymorph upon cooling is suppressed. The latter is achieved with addition of a secondary co-dopant, albeit it may be at the detriment of its ionic conductivity Here, we thoroughly investigate how MnO2 (0.5–10 mol%) as a co-dopant impacts on the sinterability, thermal expansion, crystal structure and ionic conductivity of ZrO2 doped with 10 mol% Scandia (10ScSZ), and we provide new insight on the chemistry of dissolved manganese in the fluorite lattice. Reactive sintering of 2 mol% MnO2 mixed with 10ScSZ enables to produce dense electrolyte with significant reduction of the peak sintering temperature and stabilisation of the cubic structure down to room temperature. Combined density functional theory and X-ray photoelectron spectroscopy analyses reveal that manganese predominantly enters the structure as Mn2+ during reactive sintering, with a prevalence of higher valence states at the surface and grain boundaries. The highest oxide ion conductivity is achieved for 2 mol% doped 10ScSZ (120 mScm−1 at 800 °C) and it decreases with increasing Mn concentration. For all compositions, the bulk conductivity remains independent of pO2 – corroborating a limited electronic conductivity contribution from Mn-doping. The grain boundary conductivity is found to decrease with sintering time and pO2, which is attributed to the chemistry and concentration of segregated manganese at the surface and grain boundaries, yielding depletion of oxygen vacancies in the space charge layer
    corecore