31 research outputs found

    Uncertainty estimation of end-member mixing using generalized likelihood uncertainty estimation (GLUE), applied in a lowland catchment

    Get PDF
    End-member mixing models have been widely used to separate the different components of a hydrograph, but their effectiveness suffers from uncertainty in both the identification of end-members and spatiotemporal variation in end-member concentrations. In this paper, we outline a procedure, based on the generalized likelihood uncertainty estimation (GLUE) framework, to more inclusively evaluate uncertainty in mixing models than existing approaches. We apply this procedure, referred to as G-EMMA, to a yearlong chemical data set from the heavily impacted agricultural Lissertocht catchment, Netherlands, and compare its results to the traditional end-member mixing analysis (EMMA). While the traditional approach appears unable to adequately deal with the large spatial variation in one of the end-members, the G-EMMA procedure successfully identified, with varying uncertainty, contributions of five different end-members to the stream. Our results suggest that the concentration distribution of effective end-members, that is, the flux-weighted input of an end-member to the stream, can differ markedly from that inferred from sampling of water stored in the catchment. Results also show that the uncertainty arising from identifying the correct end-members may alter calculated end-member contributions by up to 30%, stressing the importance of including the identification of end-members in the uncertainty assessment

    Hydrochemical system analysis of public supply well fields, to reveal water-quality patterns and define groundwater bodies:The Netherlands

    Get PDF
    Hydrochemical system analysis (HCSA) is used to better understand the individual state of and spatial patterns in groundwater quality, by addressing the spatial distribution of groundwater bodies with specific origins (hydrosomes) and characteristic hydrochemical zones within each hydrosome (facies). The origin is determined by environmental tracers or geomorphological and potentiometric maps, the facies by combining age, redox and alkalinity indices. The HCSA method is applied to all 206 active public supply well fields (PSWFs) in The Netherlands, resulting in the distinction of nine hydrosomes and eleven facies parameters-age (young, intermediate, old), redox ((sub)oxic, anoxic, deep anoxic, mixed) and alkalinity (very low, low, intermediate and high). The resulting classification of PSWFs provides a means to (1) predict their vulnerability; (2) optimize groundwater-quality monitoring programs; and (3) better delineate groundwater bodies, by considering groundwater origin and flow. The HCSA translates complex hydrochemical patterns into easily interpretable maps by showing PSWFs, groundwater bodies and hydrochemical facies. Such maps facilitate communication between researchers, water resources managers and policy makers and can help to solve complex groundwater resources management problems at different scales, ranging from a single well(field) or region to the national or European scale. © 2010 Springer-Verlag

    Field Testing of a Novel Drilling Technique to Expand Well Diameters at Depth in Unconsolidated Formations

    Get PDF
    Larger well diameters allow higher groundwater abstraction rates. But particularly for the construction of wells at greater depth, it may be more cost-efficient to only expand the borehole in the target aquifer. However, current drilling techniques for unconsolidated formations are limited by their expansion factors (<2) and diameters (<1000 mm). Therefore, we developed a new technique aiming to expand borehole diameters at depth in a controlled manner using a low-pressure water jet perpendicular to the drilling direction and extendable by means of a pivoting arm. During a first field test, the borehole diameter was expanded 2.6-fold from 600 to 1570 mm at a depth of 53.5 to 68 m and equipped with a well screen to create an expanded diameter gravel well (EDGW). In keeping with the larger diameter, the volume flux per m screen length was two times higher than conventional 860 mm diameter wells at the site in the subsequent 3 year production period. Although borehole clogging was slower on a volumetric basis and similar when normalized to borehole wall area, rehabilitation of particle clogging at the borehole wall was more challenging due to the thickness of the gravel pack. While jetting the entire borehole wall before backfilling holds promise to remove filter cake and thus limit particle clogging, we found that a second borehole (expanded 4.1-fold to 2460 mm) collapsed during jetting. Overall, the EDGW technique has potential to make the use of deeper unconsolidated aquifers economically (more) feasible, although further understanding of the borehole stability and rehabilitation is required to assess its wider applicability

    Water quality considerations on the rise as the use of managed aquifer recharge systems widens

    No full text
    Managed Aquifer Recharge (MAR) is a promising method of increasing water availability in water stressed areas by subsurface infiltration and storage, to overcome periods of drought, and to stabilize or even reverse salinization of coastal aquifers. Moreover, MAR could be a key technique in making alternative water resources available, such as reuse of communal effluents for agriculture, industry and even indirect potable reuse. As exemplified by the papers in this Special Issue, consideration of water quality plays a major role in developing the full potential for MAR application, ranging from the improvement of water quality to operational issues (e.g., well clogging) or sustainability concerns (e.g., infiltration of treated waste water). With the application of MAR expanding into a wider range of conditions, from deserts to urban and coastal areas, and purposes, from large scale strategic storage of desalinated water and the reuse of waste water, the importance of these considerations are on the rise. Addressing these appropriately will contribute to a greater understanding, operational reliability and acceptance of MAR applications, and lead to a range of engineered MAR systems that help increase their effectiveness to help secure the availability of water at the desired quality for the future

    Reactive transport impacts on recovered freshwater quality during multiple partially penetrating wells (MPPW-)ASR in a brackish heterogeneous aquifer

    No full text
    The use of multiple partially penetrating wells (MPPW) during aquifer storage and recovery (ASR) in brackish aquifers can significantly improve the recovery efficiency (RE) of unmixed injected water. The water quality changes by reactive transport processes in a field MPPW-ASR system and their impact on RE were analyzed. The oxic freshwater injected in the deepest of four wells was continuously enriched with sodium (Na+) and other dominant cations from the brackish groundwater due to cation exchange by repeating cycles of 'freshening'. During recovery periods, the breakthrough of Na+ was retarded in the deeper and central parts of the aquifer by 'salinization'. Cation exchange can therefore either increase or decrease the RE of MPPW-ASR compared to the RE based on conservative Cl-, depending on the maximum limits set for Na+, the aquifer's cation exchange capacity, and the native groundwater and injected water composition. Dissolution of Fe and Mn-containing carbonates was stimulated by acidifying oxidation reactions, involving adsorbed Fe2+ and Mn2+ and pyrite in the pyrite-rich deeper aquifer sections. Fe2+ and Mn2+ remained mobile in anoxic water upon approaching the recovery proximal zone, where Fe2+ precipitated via MnO2 reduction, resulting in a dominating Mn2+ contamination. Recovery of Mn2+ and Fe2+ was counteracted by frequent injections of oxygen-rich water via the recovering well to form Fe and Mn-precipitates and increase sorption. The MPPW-ASR strategy exposes a much larger part of the injected water to the deeper geochemical units first, which may therefore control the mobilization of undesired elements during MPPW-ASR, rather than the average geochemical composition of the target aquifer

    Reactive transport impacts on recovered freshwater quality during multiple partially penetrating wells (MPPW-)ASR in a brackish heterogeneous aquifer

    No full text
    The use of multiple partially penetrating wells (MPPW) during aquifer storage and recovery (ASR) in brackish aquifers can significantly improve the recovery efficiency (RE) of unmixed injected water. The water quality changes by reactive transport processes in a field MPPW-ASR system and their impact on RE were analyzed. The oxic freshwater injected in the deepest of four wells was continuously enriched with sodium (Na+) and other dominant cations from the brackish groundwater due to cation exchange by repeating cycles of 'freshening'. During recovery periods, the breakthrough of Na+ was retarded in the deeper and central parts of the aquifer by 'salinization'. Cation exchange can therefore either increase or decrease the RE of MPPW-ASR compared to the RE based on conservative Cl-, depending on the maximum limits set for Na+, the aquifer's cation exchange capacity, and the native groundwater and injected water composition. Dissolution of Fe and Mn-containing carbonates was stimulated by acidifying oxidation reactions, involving adsorbed Fe2+ and Mn2+ and pyrite in the pyrite-rich deeper aquifer sections. Fe2+ and Mn2+ remained mobile in anoxic water upon approaching the recovery proximal zone, where Fe2+ precipitated via MnO2 reduction, resulting in a dominating Mn2+ contamination. Recovery of Mn2+ and Fe2+ was counteracted by frequent injections of oxygen-rich water via the recovering well to form Fe and Mn-precipitates and increase sorption. The MPPW-ASR strategy exposes a much larger part of the injected water to the deeper geochemical units first, which may therefore control the mobilization of undesired elements during MPPW-ASR, rather than the average geochemical composition of the target aquifer
    corecore