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[1] End-member mixing models have been widely used to separate the different
components of a hydrograph, but their effectiveness suffers from uncertainty in both the
identification of end-members and spatiotemporal variation in end-member concentrations.
In this paper, we outline a procedure, based on the generalized likelihood uncertainty
estimation (GLUE) framework, to more inclusively evaluate uncertainty in mixing models
than existing approaches. We apply this procedure, referred to as G-EMMA, to a yearlong
chemical data set from the heavily impacted agricultural Lissertocht catchment,
Netherlands, and compare its results to the ‘‘traditional’’ end-member mixing analysis
(EMMA). While the traditional approach appears unable to adequately deal with the large
spatial variation in one of the end-members, the G-EMMA procedure successfully
identified, with varying uncertainty, contributions of five different end-members to the
stream. Our results suggest that the concentration distribution of ‘‘effective’’ end-members,
that is, the flux-weighted input of an end-member to the stream, can differ markedly from
that inferred from sampling of water stored in the catchment. Results also show that the
uncertainty arising from identifying the correct end-members may alter calculated end-
member contributions by up to 30%, stressing the importance of including the identification
of end-members in the uncertainty assessment.
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1. Introduction

[2] Using mixing model approaches to separate the dif-
ferent components of a hydrograph has been instrumental
in the development of hydrological science, as environmen-
tal tracers provide a unique view of the catchment-
integrated response of hydrological flow paths. The use of
mixing models has evolved from two-component mixing
models [e.g., Johnson et al., 1969; Pinder and Jones,
1969; Sklash and Farvolden, 1979], mostly aimed at sepa-
rating event and preevent water, to the now commonly
used multitracer end-member mixing analysis (EMMA)
outlined by Christophersen et al. [1990] and Christo-
phersen and Hooper [1992]. EMMA has in recent years
been applied in various geographical settings and across

spatial scales [Barthold et al., 2010; Burns et al., 2001;
Guinn Garrett et al., 2012; James and Roulet, 2006; Long
and Valder, 2011; Soulsby et al., 2003b]. Mixing model
approaches are not limited to hydrology, they are also
extensively used in other geosciences as geology [Keay
et al., 1997; Weltje, 1997], sedimentology [IJmker et al.,
2012], and ecology [Rasmussen, 2010].

[3] Mixing model approaches rely on the assumptions
that (1) stream water can be explained as a linear mixture
of extreme source solutions or end-members, (2) solutes
used as tracers in the analysis are conservative, and (3)
chemical signatures of end-members are invariant in time
and space (at least for single events) and can be reliably
characterized [Hooper et al., 1990; Sklash and Farvolden,
1979]. As noted by various authors, these assumptions are
commonly violated in real-world applications, giving rise
to uncertainty in the resulting hydrograph separations [e.g.,
Hooper et al., 1990; Soulsby et al., 2003a; Uhlenbrook
and Hoeg, 2003]. Two separate uncertainty components
can be distinguished. First, the end-members contributing
to the stream water mixture have to be properly identified.
EMMA theory requires end-members to be chosen that
best bound stream water tracer data, given a conceptual
understanding of the catchment functioning [Hooper et al.,
1990]. Problems in duplicating hydrograph separations
using different sets of tracers, however, point to the diffi-
culty in identifying the complete set of relevant end-
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members using a limited number of tracers [Barthold et al.,
2011; Rice and Hornberger, 1998]. By applying more trac-
ers than mathematically necessary, the EMMA approach
avoids this problem to a certain extent [Christophersen and
Hooper, 1992; Christophersen et al., 1990], and the diag-
nostic tools developed by Hooper [2003] provide a means
to investigate the number of contributing end-members as
evidenced from the stream water data set. Nevertheless,
Barthold et al. [2011] show that the appropriate choice of
end-members varies considerably over varying tracer set
sizes and composition, resulting in a significant uncertainty.
In this paper, we term this type of uncertainty ‘‘identifica-
tion uncertainty.’’

[4] Second, in addition to the analytical error always
associated with reported concentrations, spatial and tem-
poral variability in end-member concentrations is ubiqui-
tous at the scales considered, and is nigh impossible to
characterize adequately using inevitably sparse sampling
[Beven, 1989; Burns et al., 2001; Hoeg et al., 2000; Hoo-
per et al., 1990; James and Roulet, 2006; Kendall et al.,
2001]. Moreover, even when the variability of a suggested
end-member is adequately characterized from sampling, it
cannot be assumed that the characterized variability is mir-
rored in the flux-weighted contribution to the stream water
[Kendall et al., 2001; Rinaldo et al., 2011]. And although
the authors have argued that spatiotemporal variability may
smooth out at larger scales, resulting in ‘‘emergent’’ end-
members [Soulsby et al., 2003b], similar characterization
problems will apply. We use the term ‘‘characterization
uncertainty’’ for this type of uncertainty.

[5] Various authors have quantified characterization
uncertainty in mixing models. For instance, Hooper et al.
[1990] and later Genereux [1998] and Uhlenbrook and
Hoeg [2003] mathematically propagated the uncertainty in
end-member concentrations, Soulsby et al. [2003a] devel-
oped a hierarchical Bayesian approach, while other authors
applied a Monte Carlo approach to propagate the uncer-
tainty in the chemical signatures of end-members [Baze-
more et al., 1994; Durand and Torres, 1996]. Joerin et al.
[2002] extended the latter approach by allowing for non-
normal end-member concentration distributions, and by
taking uncertainty in the applied model hypotheses regard-
ing spatial and temporal variation into account, albeit in a
simple manner. Iorgulescu et al. [2005, 2007] tried to allow
for time changing end-members over a sequence of events
using a data-based hydrochemical model within a GLUE
framework. Barthold et al. [2011] proposed an iterative
methodology to explore, though not quantify, the identifica-
tion uncertainty in EMMA.

[6] However, none of the existing approaches account
for both identification and characterization uncertainty
quantitatively. In addition, none can be applied to end-
member mixing analyses using more solutes than mathe-
matically necessary to solve the mixing equations (i.e.,
overdetermined), even though this is a central property of
the widely used EMMA approach [Christophersen and
Hooper, 1992]. In this paper, we therefore propose a new
method to quantify uncertainty in end-member mixing
models, one that specifically considers uncertainty in both
identification and characterization of end-members, and
allows for overdetermined mixing models. We based our

approach on the generalized likelihood uncertainty estima-
tion (GLUE) methodology of Beven and Binley [1992],
which recognizes that given the fundamental limitations of
models as descriptors of environmental systems, multiple
models and parameter sets may exhibit equifinality in that
they all acceptably describe the available observational
data [Beven and Binley, 1992; Beven, 1989, 2006].

[7] We apply the proposed approach to a small (10 km2),
heavily impacted agricultural catchment in the coastal
region of Netherlands. The catchment provides a difficult
test case for our approach, as heavily impacted catchments
pose specific challenges to the application of end-member
mixing models, with agricultural activities and active water
management causing marked changes in hydrology and
chemistry [Durand and Torres, 1996]. In addition, the
‘‘open boundary’’ nature of this particular catchment,
receiving extraneous fluxes of both regional groundwater
flow and water intake, further hampers the application of
mixing models. Interest in the hydrological functioning of
this catchment is motivated by a projected increase in sa-
line seepage [Oude Essink et al., 2010], that would render
the surface water in the catchment unfit for agricultural use.

2. Materials and Methods

2.1. Lissertocht Catchment

[8] The artificial Lissertocht canal drains a 10 km2 inten-
sively drained agricultural catchment (Figure 1). The catch-
ment is part of the former lake Haarlemmermeer, reclaimed
in 1852, and is located 25 km southwest of the city of Am-
sterdam in the Netherlands (52�130 latitude, 4�360 longi-
tude). Relief in the catchment is all but flat, with an
altitudinal range of 6–3.5 m below mean sea level (BSL).
Mean annual precipitation amounts to 840 mm, mean an-
nual potential evapotranspiration to 590 mm [Royal Neth-
erlands Meteorological Institute, 2010]. Excess
precipitation is quickly drained through an extensive sys-
tem of tile drains and ditches. A pumping station at the end
of the Lissertocht maintains water levels throughout the
catchment at a relatively constant 6.55 m BSL in winter
(October-April) and 6.4 m BSL in summer (April-October).
An auxiliary pumping station at the western end of the
catchment is used only during extreme discharge events.
Water is let into the catchment through four culverts from
April to October, to maintain surface water levels and
improve water quality. Additional fresh water can be taken
into the catchment at the location of the auxiliary pump.

[9] The catchment is underlain by an aquifer of Pleisto-
cene fluvial sands (with transmissivity of 4600 6 150 m2/d;
data from the Netherlands Hydrological modeling Instru-
ment (NHI) model, available at http://www.nhi.nu/). The
aquifer is covered by a 6.7 m (6 0.7 m) thick layer of het-
erogeneous Holocene estuarine clays, loamy sands, and
peat deposits on top of a thin (5–10 cm) layer of com-
pressed peat deposits, referred to as basal peat [Stafleu
et al., 2009]. This Holocene layer presents a considerable
hydraulic resistance (i.e., thickness/vertical hydraulic con-
ductivity; 2400 6 750 d; NHI model data) to vertical
groundwater flow. Aquifer hydraulic heads exceed shallow
groundwater levels (mostly within 2 m below ground sur-
face) throughout the catchment, causing a permanent
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upward seepage flux [Oude Essink et al., 2010]. Part of this
seepage is concentrated in boils, which form preferential
flow paths between aquifer and surface water [De Louw
et al., 2010, 2011].

[10] We hypothesize five end-members to represent flow
path contributions to stream water at the catchment outlet,
two of which are external inputs to the catchment: (1) pre-
cipitation, entering the stream with minimum interaction
with the soil (denoted as PR) and (2) inlet water, extrane-
ous water taken into the catchment through inlet culverts
(IL). The other three end-members represent different local
groundwater stores, each with a characteristic flow path
contributing to stream water: (3) deep aquifer groundwater,
discharged through boil seepage (AD), (4) groundwater
below ditches, representing diffuse seepage (BD), and (5)
shallow, phreatic groundwater discharged mostly through
tile drains (SL) (Figure 2, chemistry in Table 2).

[11] Resulting from differences in geologic history, li-
thology, palaeohydrology, water management, and agricul-
tural activities, the three local groundwater types show
distinct chemical signatures. Groundwater type AD infil-
trated the aquifer when a marine transgression approxi-
mately 8 – 3.8 kyr B.P. flooded the area [Post et al., 2003].
This brackish groundwater type has a salinized, deeply

anoxic, calcite saturated facies, indicated by a negative
base exchange index (BEX) [Stuyfzand, 1999], and signifi-
cantly lower-than-expected SO4 concentrations, given the
admixing of sea water (Table 2). AD exfiltrates directly
into the surface water through boils [De Louw et al., 2010],
thus preventing any subsequent chemical interaction alter-
ing its signature. The brackish AD water type is overlain in
the aquifer by a layer of fresh groundwater, infiltrating after
coastal barriers started to form from 5.5 kyr B.P. onward
and extensive marshlands developed behind them, covering
the study area. This fresh groundwater has a different fa-
cies : freshened, deeply anoxic, and calcite saturated, dem-
onstrated by a positive BEX and calcite saturation. This
groundwater type seeps upward through a reactive layer of
basal peat before exfiltrating into the stream. We therefore
opted to sample this water type directly below ditches, just
before exfiltration, as water type BD. BD shows the highest
concentrations of HCO3, SiO2, B, and Li, testifying of peat
interaction, dissolution of diatom skeletons and desorption
of marine components after fresh water intrusion [Stuyf-
zand, 1993] (Table 2). Shallow phreatic groundwater (SL)
is even fresher (Table 2), but bears the chemical signature
of agricultural activities including fertilizer application and
drainage, leading to raised levels of SO4 by pyrite oxidation
[Pons and Van der Molen, 1973].

Figure 1. Topographic features, surface elevation and sample locations in the Lissertocht catchment.
PR: precipitation, SL: shallow, phreatic groundwater, AD: deep aquifer groundwater, BD: groundwater
below ditches, IL: inlet water, BSL: below mean sea level.
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2.2. Sampling and Analytical Methods

[12] Stream water was sampled at the catchment’s main
pumping station, from 11 October 2011 until 4 October
2012. Samples were automatically obtained at the end of
each pumping cycle (Teledyne ISCO automatic sampler)
and collected within 3 weeks of sampling. Pumping cycles
occurred approximately daily, resulting in a total of 362
samples. We investigated the response of solutes in repre-
sentative stream water in a sample bottle for a worst-case
collection scenario of 4 weeks waiting time. The sample
collection test showed significant responses of EC, alkalin-
ity, Ca, and NO3, while the response of other possible trac-
ers was in the order of analytical uncertainty. We therefore
discarded EC, alkalinity, Ca, and NO3 in subsequent data
interpretation. Catchment discharge was obtained by multi-
plying pumping times, logged at 10 min intervals by the
automated water management system of the local water
authority, with pumping capacity, measured in three repeti-
tions using a boat-mounted acoustic Doppler current pro-
filer (TeleDyne RD) [Mueller and Wagner, 2009].
Maximum discharge of the various intake culverts was
determined in three repetitions by measuring the time nec-
essary to fill a 100 L polyethylene bag.

[13] The five end-members were sampled with varying
frequency either before or throughout the stream water

sampling period, depending on their observed temporal
variance (Table 1). Shallow groundwater end-members (SL
and BD) were sampled with a peristaltic pump, in piezome-
ters screened approximately 1–2 m below the ground sur-
face or ditch bottom respectively. AD was sampled with a
peristaltic pump in one existing well, screened at 30, 40,
and 60 m below surface level. Historic data from this and
four additional nearby wells (< 9 km) was obtained from
the Dutch database on subsurface data (DINO, available at
http://www.dinoloket.nl). IL was sampled by grab sam-
pling, while PR was sampled using a bulk collector con-
nected to a rain gauge, constructed to minimize
evaporation [Gröning et al., 2012].

[14] All samples were filtered through a 0.45 �m mem-
brane filter and stored in the dark at 4�C on the day of col-
lection. Alkalinity was determined by end-point titration
(Titralab) on the day of sample collection. Anions were an-
alyzed using a DIONEX DX-120 ion chromatograph within
2 days after sample collection. A vial for cations was acidi-
fied with 65% HNO3 suprapure (0.7 mL/100 mL) on the
day of sampling, for preservation until analysis by a VAR-
IAN 730-ES ICP-OES. Analytical uncertainty was deter-
mined by analysis of internal calibration standards and set
to at least 3% (relative standard deviation) to account for
dilution errors.

2.3. Generalized Likelihood Uncertainty Estimation

[15] The GLUE methodology was developed by Beven
and Binley [1992] as an extension of the regionalized sensi-
tivity analysis (RSA) of Spear and Hornberger [1980].
Given uncertainties and errors in model structure, model
parameterization, and observational data, GLUE recognizes
that multiple models or model parameterization will be
equally good descriptors of the modeled system and thus
exhibit equifinality [Beven, 2006]. GLUE therefore, rather
than trying to optimize a single parameter set for a given
model structure, retains multiple model structures or model
parameterizations that adequately fit the observational data
and are consequently deemed behavioral. Instead of just
accepting or rejecting a parameter set (or more precisely a
model structure—parameter set combination) as in the

Figure 2. Schematic representation of expected flow path contributions to Lissertocht stream water.
IL: inlet water, PR: precipitation, BD: groundwater below ditches, SL: shallow, phreatic groundwater,
AD: deep aquifer groundwater.

Table 1. Sampling Locations, Frequency, and Period of Stream
Water and End-Members in Lissertocht Catchmenta

Number of
Locations Frequency Period

Stream 1 End of pumping cycle Oct 2011–Oct 2012
PR 1 Three-weekly

bulk samples
Dec 2011–Oct 2012

IL 2; 1 Monthly;
three-weekly

Mar 2011–Nov 2011;
Mar 2012–Oct 2012

AD 1; 5 Twice; sporadic Jun 2011, Nov 2012;
1993–Oct 2012

BD 6 Monthly Jun 2011 – Nov 2011
SL 6 Monthly Jun 2011–Nov 2011

aPR: precipitation, IL: inlet water, AD: deep aquifer groundwater, BD:
groundwater below ditches, SL: shallow, phreatic groundwater.
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original RSA, a likelihood measure is used to express a
degree of confidence in the parameter set. All behavioral pa-
rameter sets are used to predict a likelihood-weighted distri-
bution of model response(s). Interaction between parameters
is implicitly accounted for by GLUE focusing on parameter
sets rather than individual parameters. The collection of be-
havioral parameter sets is obtained by Monte Carlo sampling
of prior parameter ranges, running model simulations, and
evaluating the simulated result against a likelihood measure
to accept or reject the parameter set. A more complete
description of GLUE is presented by Beven and Binley
[1992], Beven [2009, 2006], and Freer et al. [1996].

2.4. A GLUE Approach to End-Member Mixing
Analysis (G-EMMA)

[16] An end-member mixing model, explaining stream
water chemistry as a conservative mixture of end-

member concentrations, is a very simple conceptual
description of the origin of stream water. Unsurprisingly,
mixing models suffer from similar issues with model equi-
finality due to uncertainty and errors in model structure,
parameters, and observations as the rainfall-runoff models
GLUE was first applied to. GLUE minimizes the need for
prior assumptions about model structure and structure of
errors, and is therefore especially suited to quantify the
uncertainty in mixing models pertaining to end-member
characterization, that is, the variability in end-member
concentrations. Additionally, as GLUE permits different
model structures to be simultaneously evaluated as
adequate system descriptors, uncertainty in end-member
identification can be quantified by testing different sets of
end-members against the available stream chemistry. Note
that what we term identification uncertainty in this paper is
paralleled by ‘‘structural uncertainty’’ in GLUE

Table 2. Mean and Range of the Chemical Composition of Stream Water and End-Membersa

Unit Stream PR IL AD BD SL

Clb mg/L mean 1440 6.1 136 5453 336 75
range 290–3956 1.1–22.1 113–167 4534–6590 134–840 34–169

SO4
b mg/L mean 359 4.1 90 297 299 394

range 140–578 2.1–9.1 64–112 106–665 0–872 138–837
HCO3 mg/L mean 454 10.1 263 707 1008 522

range 165–691 0.1–35.1 209–317 383–1122 658–1374 212–830
NO3 mg/L mean 13.1 3.1 8.1 1.1 2.1 2.1

range 0.1–69.1 0.1–7.1 0.1–32.1 0.1–4.1 0.1–18.1 0.1–7.1
PO4 mg/L mean 0.02 0.12 0.12 2.52 13.62 0.32

range 0.02–2.02 0.02–0.52 0.02–1.72 1.22–3.62 0.02–49.52 0.02–5.42
Nab mg/L mean 762 4.1 89 2688 278 59

range 171–1950 1.1–12.1 72–102 2300–3289 164–490 19–142
K mg/L mean 31 2.1 13 71 49 19

range 11–65 0.1–10.1 10–15 20–180 39–57 4–45
Ca mg/L mean 262 2.1 92 530 179 258

range 127–377 1.1–5.1 79–107 288–860 83–306 188–345
Mgb mg/L mean 91 1.1 18 266 108 34

range 32–206 0.1–2.1 16–20 210–410 72–128 9–69
Fe mg/L mean 0.02 0.02 0.02 10.12 0.12 0.92

range 0.02–0.22 0.02–0.02 0.02–0.12 0.22–40.02 0.02–0.92 0.02–14.32
Mn mg/L mean 0.32 0.02 0.12 0.62 1.72 1.72

range 0.02–0.92 0.02–0.12 0.12–0.22 0.12–1.92 0.72–2.52 0.92–2.82
SiO2 mg/L mean 17 1.1 8 17 77 52

range 5–27 0.1–2.1 4–12 11–22 22–99 34–77
Bb �g/L mean 345 18 128 511 1039 336

range 148–587 9–31 104–152 470–551 642–1480 137–526
Ba �g/L mean 188.1 12.1 43.1 1103.1 15.1 27.1

range 21.1–461.1 6.1–25.1 32.1–54.1 1060.1–1141.1 5.1–46.1 12.1–89.1
Brb �g/L mean 5082 22 543 16868 1615 640

range 1186–13,449 0–85 268–1623 15,663–18,134 469–3207 260–1039
F �g/L mean 0.62 0.02 0.32 0.12 0.52 0.72

range 0.02–3.22 0.02–0.12 0.22–0.52 0.02–0.22 0.22–0.72 0.32–1.22
Lib �g/L mean 30.1 1.1 13.1 28.1 68.1 50.1

range 18.1–39.1 0.1–5.1 11.1–17.1 25.1–35.1 35.1–92.1 24.1–83.1
Mo �g/L mean 2.1 0.1 2.1 0.1 1.1 5.1

range 1.1–4.1 0.1–0.1 1.1–2.1 0.1–0.1 0.1–3.1 1.1–15.1
Srb �g/L mean 1329 8.1 465 2516 1210 736

range 574–2270 3.1–16.1 403–524 2240–2940 675–1870 266–1060
EC20 �S/cm mean 4924 65 963 15306 2675 1480

range 1728–11,270 30–112 835–1022 12,900–17,113 2050–3670 1065–1860
BEXc meq/L mean �2.1 0.1 2.1 �24.1 12.1 4.1

range �16.1�3.1 0.1�0.1 1.1�2.1 �36.1–(�6.1) 5.1–18.1 0.1–7.1
SIcalcite

d mean 0.82 �5.12 0.42 0.62 0.72 0.32
range �0.62–1.62 �7.12–(�2.92) �0.52–1.02 0.32–0.92 0.22–1.32 �0.82–1.02

aPR: precipitation, IL: inlet water, AD: deep aquifer groundwater, BD: groundwater below ditches, SL: shallow, phreatic groundwater.
bSolute used as tracer.
cBase Exchange indeX: NaþKþMg – 1.0716 Cl (all in meq/L). Negative BEX indicates salinization, positive BEX freshening of facies [Stuyfzand,

1999].
dSaturation Index of calcite, calculated following [Stuyfzand, 1989].
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terminology, and characterization uncertainty by ‘‘parame-
ter uncertainty.’’

[17] Our GLUE approach to end-member mixing (G-
EMMA) starts with a definition of possible end-members. In
EMMA, the Euclidean distance between end-members and
their projection in the mixing space is used as a measure of
the ability of the end-member to explain stream water con-
centrations [Barthold et al., 2011; Christophersen and Hoo-
per, 1992; James and Roulet, 2006]. This procedure might,
however, obscure end-members that are not characterized
properly by their median observed tracer concentrations.
Instead, our approach minimizes the necessary prior assump-
tions by allowing for different end-member combinations
during different periods, while relying on the time-variant
data to reject invalid end-members.

[18] Subsequently, appropriate tracers must be identified,
subject to two of the usual conditions prescribed by mixing
model theory: (1) tracers must mix conservatively and (2)
tracers must differ in concentration between end-members
[Hooper et al., 1990; Sklash and Farvolden, 1979]. A usual
third condition: end-member concentrations must be invar-
iant in time and space, does, however, not apply to the
G-EMMA approach, which explicitly accounts for end-
member variation. The diagnostic tools of Hooper [2003]
can aid in defining appropriate tracers. All identified end-
members are characterized by a prior concentration
distribution for each tracer. Although we were able to char-
acterize concentration distributions of end-members, either
stored in the system or as direct inputs, we decided against
using these distributions as priors in the procedure. Instead,
as we lack information on how these concentrations are
convoluted to observed concentration distributions, condi-
tional on the sampling time at the catchment outlet
[Rinaldo et al., 2011], we adopted a minimal-assumption
approach and used a uniform distribution over the full
range of observed concentrations in samples belonging to
an end-member. The G-EMMA methodology then allows
the posterior effective concentrations for different end-
members to be identified, conditional on this minimal prior
assumption for effective end-member concentrations.

[19] A G-EMMA mixing model consists of: (1) a combi-
nation of end-members as a subset of all possible end-

members, (2) end-member fractions, and (3) end-member
tracer concentrations, and is, following the notation of
Christophersen and Hooper [1992], represented in matrix
notation by (1):

liB ¼xi; ð1Þ

where li represents the k sized row vector of end-member
fractions, B the k � p sized matrix of end-member concen-
trations, and xi the p sized vector of tracer concentrations
in the stream water sample, with k and p as the number of
end-members and tracers, respectively. End-member frac-
tions are sampled from a uniform Dirichlet distribution,
yielding a uniform distribution of mixtures while ensuring
mass balance closure (end-members always sum to one).
Note that we opted to sample end-member fractions, rather
than infer them from a least-squares regression technique,
so as to retain a direct dependence of the results on the cho-
sen likelihood measure (see below).

[20] For each separate stream water sample, a large num-
ber of mixing models is generated by uniform Monte Carlo
sampling and evaluated against the observed stream water
concentrations in terms of a fuzzy likelihood measure. A
fuzzy measure, after Zadeh [1965], can be used to express
a ‘‘degree of belief’’ in the model as a valid simulator of
the system [Beven and Binley, 1992] and has been used in
various previous GLUE applications [Blazkova and Beven,
2002, 2009; Freer et al., 2004; Liu et al., 2009; Page
et al., 2003, 2007; Pappenberger et al., 2007]. It can be a
useful approach to model evaluation when there is an ex-
pectation of epistemic (nonrandom), rather than aleatory
(random) errors in the modeling process and observational
data [Beven, 2006, 2012]. We define our fuzzy likelihood
measure as the average over all tracers of individual trape-
zoids around the analytical values for each tracer, with a
relative likelihood of one for calculated values within one
standard deviation of the analytical value, decreasing line-
arly to zero at three standard deviations. Simulations are
considered behavioral only if calculated values for all trac-
ers fall within their respective trapezoids (Figure 3). The
repetition of this procedure for each stream water sample
allows for time-varying end-member fractions and end-

Figure 3. Calculation of the fuzzy likelihood measure for two fictitious solutes. Dashed lines denote
limits of acceptability (�3 to þ3 analytical std. dev.) for the individual solutes.
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member concentrations, as a reflection of catchment proc-
esses. Likelihoods are rescaled to sum to unity over the en-
semble of behavioral models identified for each time step
independently. All software and source code written to
facilitate the G-EMMA procedure are available for down-
load at http://g-emma.deltares.nl/.

2.5. Application to the Lissertocht Data Set

[21] We compared applications of both the G-EMMA
and original EMMA approaches to the Lissertocht data set
to assess the significance of accounting for uncertainty in
mixing models in a challenging catchment. We first used
the diagnostic tools of Hooper [2003] to identify appropri-
ate tracers, complemented by expert knowledge on the
chemical stability of solutes in the catchment. Following
the EMMA procedure outlined by Christophersen and
Hooper [1992], we constructed a correlation matrix, by
standardizing the stream water samples to zero mean and a
standard deviation of one, before performing a principal
components analysis (PCA) on the correlation matrix using
all appropriate tracers. We investigated the dimensionality
in the data set by analysis of both the eigenvalues (‘‘the
rule of one’’) and the apparent structure in the residuals for
increasing dimensionality, and calculated relative RMS
errors (RRMSE) for all residuals [Hooper, 2003]. We sub-
sequently used the methodology proposed by Barthold
et al. [2011] to evaluate all possible combinations (mini-
mum of three) of end-members for all possible combina-
tions (minimum of four) of tracers on the three criteria : (1)
the Euclidean distance between end-members in solute
space and their projections in the mixing space is less than
15% [James and Roulet, 2006], (2) smallest deviations of
the calculated end-member fractions from the plausible
0%–100% range and (3) the smallest Euclidian distance
between end-members and the median of stream water in
the mixing space. We calculated end-member fractions for
the best performing end-member combination for compari-
son with G-EMMA results.

[22] In the G-EMMA procedure, we retained all possible
end-members and tracers. We identified behavioral end-
member fractions using the G-EMMA procedure outlined
above, using the full range of observed concentrations for
our five end-members (Table 2). The number of end-
members was allowed to vary randomly between three and
five, and we used 1 � 109 Monte Carlo runs for each stream
sample. We set the uncertainty of stream water samples to
their respective analytical uncertainty and calculated the
likelihood of each run following the procedure outlined
above. G-EMMA results were evaluated by comparing
modeled stream water chemistry with observed stream
water chemistry (a valid test because the likelihood is aver-
aged over all tracers), by determining the identification of
the end-member fractions and by evaluating the calculated
catchment response in terms of its physical plausibility. To
explore the relative contribution of identification and char-
acterization uncertainty, we investigated the variety of end-
member combinations that yielded behavioral results. In
addition, we compared the uncertainty calculated for all
possible end-member combinations to that for the end-
member combination most likely based on conventional
EMMA criteria, and investigated the time-variant response
of behavioral end-member concentrations.

3. Results

3.1. Catchment Hydrometry and Chemistry

[23] Measured chemical composition of the catchment
and end-members is summarized in Table 2. Concentration
ranges for the end-members SL and BD were relatively
wide, reflecting their high spatial variability. The chemical
composition of the stream water was highly variable and
showed a distinct response to precipitation events (Figure
4). Generally, solutes B, Br, Cl, Mg, Na, and Sr showed a
decrease, whereas Li and SO4 concentrations rose with
increasing discharge. April 2012 signified a marked drop in
all solute concentrations, coinciding with the start of intake
of inlet water into the catchment. Maximum capacity of the
four intake culverts together was measured at 95.7 6 4.3
l/s, which equals 0.83 6 0.04 mm/d. Pumping capacity of
the main pump was measured at 1.01 6 0.02 m3/s and
1.35 6 0.05 m3/s in normal and maximum operation,
respectively.

3.2. EMMA, Hooper’s Diagnostic Tools, and
Evaluation of Possible End-Members

[24] After investigation of bivariate solute-solute plots,
we selected B, Br, Cl, Li, Mg, Na, SO4, and Sr as suitable
tracers. Other possible tracers showed no significant linear
correlation with other solutes and were therefore discarded.
After performing a PCA on the Lissertocht stream samples,
the rank of the data set was analyzed by studying the struc-
ture in the residuals of the solute concentrations in the
reduced model space. The ‘‘rule of one’’ suggested a two-
dimensional model space explaining 96% of the variance in
the stream concentrations, a result corroborated by visual
inspection of the residuals and calculated RRMSEs (aver-
age 5.6%). Some structure was, however, still apparent for
solute B, which disappeared in a three-dimensional model
space (average RRMSE 3.5%). The evaluation of possible
end-member combinations, following Barthold et al.
[2011], resulted in end-members AD, SL, and IL (100%,
98%, and 95%, respectively) featuring in nearly all and BD
(74%) in the majority of plausible combinations, while PR
featured in markedly less (13%). Differences between trac-
ers were small, all tracers were present in between 55% and
65% of plausible results. The combination of IL, SL, BD,
and AD was by far the most prominent, making up 57% of
plausible results. Calculated end-member fractions using
this combination and all tracers are shown in Figure 5. The
fractions of all end-members except AD often fall outside
the plausible 0–1 range, most notably during the high dis-
charge period of December 2011 to January 2012.

3.3. GLUE End-Member Mixing Analysis (G-EMMA)

[25] GLUE analysis of the 362 stream samples resulted
in a median value and 25–75 percentile range of 3.8 � 103

(3.1 � 102�1.2 � 104) behavioral runs (with positive fuzzy
membership for all eight tracers) out of a possible 1 � 109.
Two samples (on 17 December 2011 and 17 July 2012)
yielded no behavioral runs (i.e., all of the tried combina-
tions of fractions failed to match the defined fuzzy support
for one or more tracers). Measured stream water concentra-
tions could, with these two exceptions, consistently be
explained by mixtures of our chosen end-members, as is
reflected in the excellent agreement of modeled and
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Figure 4. (a) Net precipitation, (b) discharge, and (c–j) measured and G-EMMA modeled stream water
concentrations for tracers B, Br, Cl, Li, Mg, Na, SO4, and Sr. In Figure 4b, dark shaded area represents
operation of auxiliary pump, light shaded area represents 6 1 standard deviation. In Figures 4c–4j, dots
represent measured values, with error bars denoting 6 1 analytical standard deviation, and solid line and
shaded area represent median and 5–95 percentile range of modeled values.
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Figure 5. (a) Net precipitation, (b) discharge, and (c–g) EMMA result (dashed line) and median (solid
line), 25–75 percentile range (dark-shaded band), and 5–95 percentile range (light-shaded band) of G-
EMMA calculated fractions of AD, BD, SL, IL, and PR in stream water. The area in Figures 5c–5g out-
side the plausible 0–1 range of end-member fractions is indicated in light gray.
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measured stream water concentrations of tracers B, Br, Cl,
Li, Mg, Na, and SO4. Only Sr is consistently under pre-
dicted, albeit slightly (Figure 4). The possibilistic distribu-
tions of end-member fractions that yielded behavioral
results for the different samples are plotted in Figure 5.
This plot can be regarded as a time-variant version of the
well-known ‘‘dotty-plots’’ of GLUE applications [e.g.,
Beven, 2006], showing the likelihood-weighted marginal
distributions of behavioral model parameters changing over
time, as each sample is represented by a separate Monte
Carlo calculation. The calculated uncertainty in end-
member fractions, indicated by the 5–95 and 25–75 percen-
tile ranges (shaded bands) in Figure 5, varied over time and
between end-members. The complete marginal distribu-
tions of all end-member fractions lay (necessarily) within
the 0–1 range, and are asymmetrical. While there was con-
siderable uncertainty in the fractions of all end-members
except AD, all end-member contributions were sensitive
parameters in the GLUE sense and could therefore be
adequately identified throughout the time series. Except for
AD, behaviorial end-member fractions differed markedly
from fractions calculated with conventional EMMA. G-
EMMA calculated SL fractions were lower than those cal-
culated with EMMA, which at times exceeded a fraction of
1. Contrastingly, G-EMMA calculated BD and IL fractions
were higher than the equivalent EMMA fractions, which at
times fell below 0.

[26] We took a closer look at the distribution of end-
members, end-member combinations, and end-member
concentrations in the posterior parameter set, that is, the
models and parameters that make up the behavioral runs.
Averaged over the entire time series, frequencies of end-
members occurring in behavioral end-member combina-
tions were: AD: 100%, SL: 90%, IL: 86%, BD: 82%, and
PR: 52%. Results resemble those obtained through the cri-
teria of Barthold et al. [2011], although the contribution of
PR is much more prominent in the G-EMMA analysis. The
end-member combination of IL, SL, BD, and AD yielded
the most behavioral runs, closely followed by the combina-
tion of all five end-members (Table 3). Results from G-
EMMA include more combinations, and frequencies are
spread out more evenly over the different combinations.

[27] The effect of including the identification uncertainty
in G-EMMA was investigated by comparing the behavioral
end-member fractions for all possible combinations, to the
subset of behavioral fractions for the combination IL, SL,
BD, AD, the most dominant combination from the criteria
of Barthold et al. [2011]. Maximum effects were seen in
IL, the median fraction of IL resulting from all possible
end-member combinations is consistently lower (average
�30 6 8%) than from the subset of one possible combina-
tion, and its uncertainty (5–95 percentile range) is consis-
tently larger (average 64 6 90%) than from the subset
(Figure 6). Smallest effects were observed for AD, but

Table 3. Frequencies of End-Member Combinations Producing Behavioral Results

Combination of
End-Membersa

IL, SL,
BD, AD

IL, SL, BD,
AD, PR

IL, SL,
AD, PR

SL, BD,
AD, PR

IL, SL,
AD

IL, BD,
AD

IL, BD,
AD, PR

SL, BD,
AD

SL, AD,
PR

BD, AD,
PR

IL, AD,
PR

IL, SL, BD,
PR

IL, SL,
BD

IL, SL,
PR

IL, BD,
PR

Frequency (%) 30 29 9 8 7 5 5 4 2 0 0 0 0 0 0

aIL: inlet water, SL: shallow, phreatic groundwater, BD: groundwater below ditches, AD: deep aquifer groundwater, PR: precipitation.

Figure 6. Difference of median (solid line), 25–75 percentile range (dark-shaded band), and 5–95 per-
centile range (light-shaded band) of IL between (a) all possible end-member combinations and (b) only
combination AD, BD, SL, and IL. Dashed line in Figure 6b denotes calculated EMMA result for IL.
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effects were still on average �4 6 24% on median fractions
(uncertainty range 5 6 7% larger). For comparison, the
EMMA result (which also pertained to this end-member
combination) for IL is also shown in Figure 6b. Even with
identical end-member combinations, results differ mark-
edly between EMMA and G-EMMA.

[28] Analysis of the likelihood weighted marginal distri-
butions of end-member tracer concentrations revealed a
general insensitivity of the likelihood of modeled stream
water concentrations to IL and PR concentrations, and lim-
ited sensitivity to most AD and BD concentrations, as be-
havioral simulations were found throughout the respective
parameter distributions (not shown). Note that model likeli-
hood is associated with a combination of a model structure
(end-member combination) and model parameters, rather
than a single model parameter [Beven, 2006]. So while the
model likelihood (i.e., the fit of stream water concentra-
tions) may be insensitive to end-member concentrations,
end-member fractions do not necessarily have to be. Most
SL tracer concentrations were, however, constrained to part
of their initial range during discharge events, when the
fraction of SL in stream water is highest (SO4 shown in
Figure 7a). Behavioral results were limited to lower con-
centrations of B, Li, and Mg, and to higher concentrations
of SO4 and Sr during discharge events. Subsequent indica-
tive calculations using these constrained concentrations of
SL, instead of the full range, clearly lessened the sensitivity
of SL concentrations, while hardly affecting modeled
stream concentrations. The resulting median SL fraction
was slightly lower (�8 6 14%) than using the full range,
while its uncertainty decreased (�20 6 15%).

3.4. Catchment Response

[29] Calculating the discharge for each end-member by
multiplying the fraction with the discharge provides a com-
prehensive view of the catchment’s response to rainfall
events and enables a, subjective, plausibility check of G-
EMMA results (Figure 8). Generally, the observed patterns
in catchment response are physically plausible and are con-
sistent with our previously formed perceptual model of the

hydrologic functioning of the catchment. The catchment
response showed a relatively constant flux of AD, consist-
ent with the relatively constant head difference between the
aquifer and the tightly managed surface water levels, and in
agreement with results for a similar catchment [De Louw
et al., 2011]. Precipitation events resulted in a dominant
contribution of SL to discharge, a behavior exhibited by
numerous catchments over a range of different geographi-
cal settings (overview in Weiler et al. [2005]). A long dry
period before the onset of precipitation delayed the
response of SL and BD considerably, indicating a thorough
depletion of shallow groundwater stores.

[30] Active water management in the catchment is evi-
denced in the hydrograph by a rising contribution of IL
(and PR to a lesser extent) around 1 April 2012, coinciding
with the start of intake of fresh water into the catchment.
The discharge of IL rose to a relatively constant value of
about 0.5 mm/d, which was in the order of the measured
maximum capacity of the intake culverts. Additional intake
of water at the auxiliary pump had started on 29 May 2012,
lasting approximately 1 week (M. Riethoff, Rijnland Water
Authority, personal communication, 2012), coinciding well
with the temporary rise in IL discharge in June 2012. The
contribution of IL during the winter months and during
summer precipitation events was unexpected however, as
its input is controlled by actively managed hydraulic struc-
tures. This unexpected result may be caused by (1) the lack
of separation between IL and PR, the unexpected IL contri-
bution in fact being PR, (2) an unidentified source of water
with similar chemical properties as IL, most likely subterra-
nean inputs from the canal supplying IL water, or (3) stor-
age in the extensive surface water system flushed out at
discharge events. Due to the uncertainty associated with
the proximate locations of IL and PR in mixing space, an
additional tracer that better distinguishes between the two
would be necessary to better separate the two end-
members. Gadolinium has proved successful in a similar
setting [Rozemeijer et al., 2012] and also 18O could yield
better contrasts [Stuyfzand, 1993]. The contribution of PR
appears small even during the larger precipitation events,

Figure 7. (a) Posterior distribution of SO4 concentrations of end-member SL and (b) frequency distri-
bution of sampled SL–SO4 concentrations (dark) versus G-EMMA behavioral SL–SO4 concentrations
on 25 December 2011 (light). The day 25 December 2011 is indicated in Figure 7a by a vertical dashed
line. Solid line in Figure 7a represents median values, 25–75 and 5–95 percentile ranges are represented
by dark- and light-shaded bands, respectively.
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indicating the absence of significant fast flow routes like
overland flow, although the lack of separation between PR
and IL necessitates caution when drawing this conclusion.

4. Discussion

[31] Given the well-established problems in identifying
and characterizing end-members, end-member mixing
models are, at best, simple hypotheses about catchment
functioning. Nevertheless, they can still offer valuable

insights, assuming uncertainty is adequately accounted for
[Soulsby et al., 2003a; Uhlenbrook and Hoeg, 2003]. This
paper presents G-EMMA, a novel method of quantifying
uncertainty, both in identifying and characterizing end-
members, in end-member mixing models, based on the
GLUE methodology of Beven and Binley [1992]. An addi-
tional advantage is that our method allows for using more
tracers than necessary, a central feature of EMMA, but
lacking in existing quantitative uncertainty assessments.
We showed that G-EMMA is able to adequately model

Figure 8. Median (solid line), 25–5 percentile range (dark-shaded band) and 5–95 percentile range
(light-shaded band) of discharge of (a) AD, (b) BD, (c) SL, (d) IL, and (e) PR.
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stream water concentrations and identify contributions of
five different end-members, albeit with varying uncertainty.
Therefore, as was also shown by Soulsby et al. [2003a],
even in agricultural catchments, heavily impacted by agri-
cultural activities and intricate water management, mixing
models can help to better understand catchment
functioning.

[32] Several existing approaches have quantified the
uncertainty resulting from an inability to adequately charac-
terize end-member concentrations [Bazemore et al., 1994;
Genereux, 1998; Hooper et al., 1990; Joerin et al., 2002;
Soulsby et al., 2003a]. Uncertainty in end-member concen-
trations was inferred from sampling of stored water, and in
most approaches, approximated by a Gaussian distribution.
However, as Joerin et al. [2002] recognize, and illustrated
by Figure 7b, end-member concentrations do not always fol-
low a Gaussian distribution, so that this approximation may
lead to incorrect uncertainty estimations. Furthermore, an
accurate characterization of stores of end-member water in a
catchment does not necessarily equate to a proper characteri-
zation of the flux-weighted input to the stream [Rinaldo
et al., 2011], although implicitly assumed by these
approaches. Instead, recognizing the impossibility of
adequate characterization of the flux-weighted input to the
stream, we adopted a minimal assumption approach in G-
EMMA and assumed a uniform prior distribution over the
complete range of sampled end-member concentrations. As
evidenced from Figure 7b, the posterior distribution of be-
havioral end-member concentrations can indeed differ mark-
edly from the distribution obtained through sampling,
signifying our inability to adequately a priori characterize
end-member concentrations.

[33] We did not explicitly include the temporal variation
of end-member tracer concentrations in our mixing models,
as temporal variance was relatively low in measured end-
member concentrations. Furthermore, adequate quantifica-
tion of the effect of temporal variance in catchment inputs
on stream concentrations would require a theoretical frame-
work that accounts for both nonlinearity and nonstationar-
ity in travel times [Iorgulescu et al., 2005, 2007; Rinaldo
et al., 2011], which is outside the scope of this research.
Temporal variation is, however, implicitly accounted for in
G-EMMA, as every stream water sample is independently
modeled using the full range of observed end-member
tracer concentrations. If a temporal signal is significant
enough to be expressed in stream water concentrations de-
spite all uncertainty, end-member concentrations should be
sensitive parameters in GLUE. Our model results were,
however, generally insensitive to end-member concentra-
tions, with the exception of SL. While we cannot exclude
temporal variation in SL concentrations, the constraining of
SL concentrations during discharge peaks is more likely a
result of the high proportion of SL in stream water, increas-
ing the sensitivity to SL concentrations. The constrained
concentrations of SL during discharge events may therefore
be a closer representation of ‘‘real’’ SL water (i.e., the flux-
weighted input to the stream) than the range obtained from
sampling.

[34] Explicitly including time-variant patterns in end-
member fractions and concentrations in G-EMMA poten-
tially offers several advantages and is an important direc-
tion for future research. First, extending the work of

Iorgulescu et al. [2005, 2007], combining G-EMMA with
the recent progress made in research on transit time distri-
butions [Heidb€uchel et al., 2012; Rinaldo et al., 2011; van
der Velde et al., 2012] may be a way to shed more light on
the time-variant behavior of end-member concentrations or
their convolution to stream chemistry through instationary
transit times. Second, combining results for successive
samples in a time-filtered way may reduce the uncertainty
of end-member fractions as opposed to the current inde-
pendent simulation of successive samples.

[35] In mixing model analyses, the choice of end-
members is often a translation of the researcher’s hypothe-
sis of catchment functioning and therefore, by definition,
also an uncertain one. The GLUE approach of G-EMMA
quantifies this identification uncertainty by simultaneously
evaluating different possible end-member combinations. A
comparison between results for a selected end-member
combination and the complete result set (Figure 6) illus-
trated the possible significance of identification uncertainty,
in this particular case amounting to a maximum 30% differ-
ence in median calculated end-member fractions. End-
member IL occupies a proximate location to PR in the mix-
ing space of the Lissertocht catchment, resulting in interfer-
ence and hence a relatively high uncertainty of both end-
members. Similar uncertainty due to interference has, to
our knowledge, not been reported, as conventional EMMA
guidelines [e.g. Christophersen and Hooper, 1992; Chris-
tophersen et al., 1990] recommend the use of end-members
that are sufficiently different to each other. We would
argue, however, that even if adequate separation is simply
impossible based on the available measurement data,
retaining proximal end-members presents a more realistic
notion of the uncertainty in our understanding of catchment
functioning.

[36] The heavily impacted Lissertocht catchment is, due
to the significant spatial variation in end-member concen-
trations and extraneous inputs of regional groundwater and
fresh water intake, a difficult test case for applying end-
member mixing models. Indeed, conventional EMMA suf-
fered from repeated excursions of end-member fractions
outside the plausible 0–1 range (Figure 5). As these excur-
sions predominantly occurred during discharge events with
a large fraction of SL water, this end-member is probably
not well represented by its sampled concentration median.
The skewed constraining of behavioral SL concentrations
in the G-EMMA analysis also points in this direction. Con-
trastingly, G-EMMA application was not significantly
affected by the uncertainty in end-member concentrations,
and was still able to identify the (uncertain) contributions
of five different end-members to the Lissertocht. Therefore,
in addition to quantifying uncertainty in end-member mix-
ing models, G-EMMA can potentially be applied over a
wider range of catchments than conventional EMMA,
while still yielding meaningful results. Moreover, applica-
tion of G-EMMA is not limited to hydrology, but may be
successfully applied to end-member mixing problems in
other (earth) sciences.

5. Conclusion

[37] Using a GLUE-based approach to end-member mix-
ing models allowed a more complete investigation of end-
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member mixing uncertainty than existing methods, as the
approach includes both characterization and identification
uncertainty. Despite this uncertainty, G-EMMA was able to
characterize end-member contributions to the Lissertocht,
where conventional EMMA results suffered from repeated
excursions outside the plausible 0–1 range. We therefore
recommend using G-EMMA to more robustly test hypothe-
ses about catchment functioning, especially in complex
catchments with considerable concentration ranges. In spite
of the well-rehearsed difficulties in applying end-member
mixing models to agricultural catchments, our approach
enabled us to improve our understanding of the functioning
of an actively managed Dutch polder catchment throughout
the course of a year.
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