113 research outputs found
Novel nickel nanoparticles stabilized by imidazolium-amidinate ligands for selective hydrogenation of alkynes
[EN] The main challenge in the hydrogenation of alkynes into (E)- or (Z)-alkenes is to control the selective formation of the alkene, avoiding the over-reduction to the corresponding alkane. In addition, the preparation of recoverable and reusable catalysts is of high interest. In this work, we report novel nickel nanoparticles (Ni NPs) stabilized by three different imidazolium-amidinate ligands (ICy center dot(NCN)-N-(Ar); L1: Ar = p-tol, L2: Ar = p-anisyl and L3: Ar = p-ClC6H4). The as-prepared Ni NPs were fully characterized by (HR)-TEM, XRD, WASX, XPS and VSM. The nanocatalysts are active in the hydrogenation of various substrates. They present a remarkable selectivity in the hydrogenation of alkynes towards (Z)-alkenes, particularly in the hydrogenation of 3-hexyne into (Z)-3-hexene under mild reaction conditions (room temperature, 3% mol Ni and 1 bar H-2). The catalytic behaviour of Ni NPs was influenced by the electron donor/acceptor groups (-Me, -OMe, -Cl) in the N-aryl substituents of the amidinate moiety of the ligands. Due to the magnetic character of the Ni NPs, recycling experiments were successfully performed after decantation in the presence of an external magnet, which allowed us to recover and reuse these catalysts at least 3 times preserving both activity and chemoselectivity.The authors thank CNRS, UPS-Toulouse, INSA, "IDEX/Chaires d'attractivite l'Universite Federale Toulouse Midi-Pyrenees", "Instituto de Tecnologia Quimica" (ITQ; UPV-CSIC), "Juan de la Cierva" programme (IJCI-2016-27966), "Primero Proyectos de Investigacion" (PAID-06-18), "Instituto de Investigaciones Quimicas" (IIQ; CSIC-US), "Ministerio de Ciencia, Innovacion y Universidades" (MCIU/AEI), FEDER funds of the European Union (PGC2018-095768-B-I00) and ERC Advanced Grant (MONACAT 2015-694159) for financial support. We also thank L. Datas for the TEM facilities (UMS Castaing) and S. Cayez for the HRTEM measurements.López-Vinasco, AM.; Martínez-Prieto, LM.; Asensio, JM.; Lecante, P.; Chaudret, B.; Cámpora, J.; Van Leeuwen, PWNM. (2020). Novel nickel nanoparticles stabilized by imidazolium-amidinate ligands for selective hydrogenation of alkynes. Catalysis Science & Technology. 10(2):342-350. https://doi.org/10.1039/c9cy02172hS342350102Swamy, K. C. K., Reddy, A. S., Sandeep, K., & Kalyani, A. (2018). Advances in chemoselective and/or stereoselective semihydrogenation of alkynes. Tetrahedron Letters, 59(5), 419-429. doi:10.1016/j.tetlet.2017.12.057Lei, J., Su, L., Zeng, K., Chen, T., Qiu, R., Zhou, Y., … Yin, S.-F. (2017). Recent advances of catalytic processes on the transformation of alkynes into functional compounds. Chemical Engineering Science, 171, 404-425. doi:10.1016/j.ces.2017.05.021J. G. de Vries and C. J.Elsevier , The Handbook of Homogeneous Hydrogenation , Wiley-VCH , 2008Albani, D., Shahrokhi, M., Chen, Z., Mitchell, S., Hauert, R., López, N., & Pérez-Ramírez, J. (2018). Selective ensembles in supported palladium sulfide nanoparticles for alkyne semi-hydrogenation. Nature Communications, 9(1). doi:10.1038/s41467-018-05052-4Chinchilla, R., & Nájera, C. (2013). Chemicals from Alkynes with Palladium Catalysts. Chemical Reviews, 114(3), 1783-1826. doi:10.1021/cr400133pLópez, N., & Vargas-Fuentes, C. (2012). Promoters in the hydrogenation of alkynes in mixtures: insights from density functional theory. Chem. Commun., 48(10), 1379-1391. doi:10.1039/c1cc14922aCrespo-Quesada, M., Cárdenas-Lizana, F., Dessimoz, A.-L., & Kiwi-Minsker, L. (2012). Modern Trends in Catalyst and Process Design for Alkyne Hydrogenations. ACS Catalysis, 2(8), 1773-1786. doi:10.1021/cs300284rMolnár, Á., Sárkány, A., & Varga, M. (2001). Hydrogenation of carbon–carbon multiple bonds: chemo-, regio- and stereo-selectivity. Journal of Molecular Catalysis A: Chemical, 173(1-2), 185-221. doi:10.1016/s1381-1169(01)00150-9Lindlar, H. (1952). Ein neuer Katalysator für selektive Hydrierungen. Helvetica Chimica Acta, 35(2), 446-450. doi:10.1002/hlca.19520350205Delgado, J. A., Benkirane, O., Claver, C., Curulla-Ferré, D., & Godard, C. (2017). Advances in the preparation of highly selective nanocatalysts for the semi-hydrogenation of alkynes using colloidal approaches. Dalton Transactions, 46(37), 12381-12403. doi:10.1039/c7dt01607gK. Philippot and P.Serp , Nanomaterials in Catalysis , Wiley-VCH , Weinheim , 2013D. Astruc , Nanoparticles and Catalysis , Wiley-VCH , Weinheim , 2008U. Heiz and U.Landman , Nanocatalysis , Springer , Berlin , 2007Vilé, G., Almora-Barrios, N., Mitchell, S., López, N., & Pérez-Ramírez, J. (2014). From the Lindlar Catalyst to Supported Ligand-Modified Palladium Nanoparticles: Selectivity Patterns and Accessibility Constraints in the Continuous-Flow Three-Phase Hydrogenation of Acetylenic Compounds. Chemistry - A European Journal, 20(20), 5926-5937. doi:10.1002/chem.201304795Witte, P. T., Boland, S., Kirby, F., van Maanen, R., Bleeker, B. F., de Winter, D. A. M., … Berben, P. H. (2012). NanoSelect Pd Catalysts: What Causes the High Selectivity of These Supported Colloidal Catalysts in Alkyne Semi-Hydrogenation? ChemCatChem, 5(2), 582-587. doi:10.1002/cctc.201200460La Sorella, G., Sperni, L., Canton, P., Coletti, L., Fabris, F., Strukul, G., & Scarso, A. (2018). Selective Hydrogenations and Dechlorinations in Water Mediated by Anionic Surfactant-Stabilized Pd Nanoparticles. The Journal of Organic Chemistry, 83(14), 7438-7446. doi:10.1021/acs.joc.8b00314Nikoshvili, L. Z., Bykov, A. V., Khudyakova, T. E., LaGrange, T., Héroguel, F., Luterbacher, J. S., … Kiwi-Minsker, L. (2017). Promotion Effect of Alkali Metal Hydroxides on Polymer-Stabilized Pd Nanoparticles for Selective Hydrogenation of C–C Triple Bonds in Alkynols. Industrial & Engineering Chemistry Research, 56(45), 13219-13227. doi:10.1021/acs.iecr.7b01612Reina, A., Favier, I., Pradel, C., & Gómez, M. (2018). Stable Zero-Valent Nickel Nanoparticles in Glycerol: Synthesis and Applications in Selective Hydrogenations. Advanced Synthesis & Catalysis, 360(18), 3544-3552. doi:10.1002/adsc.201800786De los Bernardos, M. D., Pérez-Rodríguez, S., Gual, A., Claver, C., & Godard, C. (2017). Facile synthesis of NHC-stabilized Ni nanoparticles and their catalytic application in the Z-selective hydrogenation of alkynes. Chemical Communications, 53(56), 7894-7897. doi:10.1039/c7cc01779kWen, X., Shi, X., Qiao, X., Wu, Z., & Bai, G. (2017). Ligand-free nickel-catalyzed semihydrogenation of alkynes with sodium borohydride: a highly efficient and selective process for cis-alkenes under ambient conditions. Chemical Communications, 53(39), 5372-5375. doi:10.1039/c7cc02140bKonnerth, H., & Prechtl, M. H. G. (2016). Selective partial hydrogenation of alkynes to (Z)-alkenes with ionic liquid-doped nickel nanocatalysts at near ambient conditions. Chemical Communications, 52(58), 9129-9132. doi:10.1039/c6cc00499gCarenco, S., Leyva-Pérez, A., Concepción, P., Boissière, C., Mézailles, N., Sanchez, C., & Corma, A. (2012). Nickel phosphide nanocatalysts for the chemoselective hydrogenation of alkynes. Nano Today, 7(1), 21-28. doi:10.1016/j.nantod.2011.12.003Polshettiwar, V., Baruwati, B., & Varma, R. S. (2009). Nanoparticle-supported and magnetically recoverable nickel catalyst: a robust and economic hydrogenation and transfer hydrogenation protocol. Green Chem., 11(1), 127-131. doi:10.1039/b815058cAlonso, F., Osante, I., & Yus, M. (2007). Highly selective hydrogenation of multiple carbon–carbon bonds promoted by nickel(0) nanoparticles. Tetrahedron, 63(1), 93-102. doi:10.1016/j.tet.2006.10.043Rossi, L. M., Costa, N. J. S., Silva, F. P., & Wojcieszak, R. (2014). Magnetic nanomaterials in catalysis: advanced catalysts for magnetic separation and beyond. Green Chemistry, 16(6), 2906. doi:10.1039/c4gc00164hMartínez-Prieto, L. M., & Chaudret, B. (2018). Organometallic Ruthenium Nanoparticles: Synthesis, Surface Chemistry, and Insights into Ligand Coordination. Accounts of Chemical Research, 51(2), 376-384. doi:10.1021/acs.accounts.7b00378Martínez-Prieto, L. M., Baquero, E. A., Pieters, G., Flores, J. C., de Jesús, E., Nayral, C., … Chaudret, B. (2017). Monitoring of nanoparticle reactivity in solution: interaction of l-lysine and Ru nanoparticles probed by chemical shift perturbation parallels regioselective H/D exchange. Chemical Communications, 53(43), 5850-5853. doi:10.1039/c7cc02445bMartínez-Prieto, L. M., Rakers, L., López-Vinasco, A. M., Cano, I., Coppel, Y., Philippot, K., … van Leeuwen, P. W. N. M. (2017). Soluble Platinum Nanoparticles Ligated by Long-Chain N-Heterocyclic Carbenes as Catalysts. Chemistry - A European Journal, 23(52), 12779-12786. doi:10.1002/chem.201702288Asensio, J. M., Tricard, S., Coppel, Y., Andrés, R., Chaudret, B., & de Jesús, E. (2016). Knight Shift in
13
C NMR Resonances Confirms the Coordination of N‐Heterocyclic Carbene Ligands to Water‐Soluble Palladium Nanoparticles. Angewandte Chemie International Edition, 56(3), 865-869. doi:10.1002/anie.201610251Martínez-Prieto, L. M., Urbaneja, C., Palma, P., Cámpora, J., Philippot, K., & Chaudret, B. (2015). A betaine adduct of N-heterocyclic carbene and carbodiimide, an efficient ligand to produce ultra-small ruthenium nanoparticles. Chemical Communications, 51(22), 4647-4650. doi:10.1039/c5cc00211gMartínez-Prieto, L. M., Cano, I., Márquez, A., Baquero, E. A., Tricard, S., Cusinato, L., … van Leeuwen, P. W. N. M. (2017). Zwitterionic amidinates as effective ligands for platinum nanoparticle hydrogenation catalysts. Chemical Science, 8(4), 2931-2941. doi:10.1039/c6sc05551fBiju, V., & Abdul Khadar, M. (2002). Journal of Nanoparticle Research, 4(3), 247-253. doi:10.1023/a:1019949805751Van Veenendaal, M. A., & Sawatzky, G. A. (1993). Nonlocal screening effects in 2px-ray photoemission spectroscopy core-level line shapes of transition metal compounds. Physical Review Letters, 70(16), 2459-2462. doi:10.1103/physrevlett.70.2459Vedrine, J. C., Hollinger, G., & Tran Minh Duc. (1978). Investigations of antigorite and nickel supported catalysts by x-ray photoelectron spectroscopy. The Journal of Physical Chemistry, 82(13), 1515-1520. doi:10.1021/j100502a011Delgado, D., Sanchís, R., Cecilia, J. A., Rodríguez-Castellón, E., Caballero, A., Solsona, B., & Nieto, J. M. L. (2019). Support effects on NiO-based catalysts for the oxidative dehydrogenation (ODH) of ethane. Catalysis Today, 333, 10-16. doi:10.1016/j.cattod.2018.07.010D. Jiles , Introduction to Magnetism and Magnetic Materials , Chapman and Hall , London , 1991Kaiser, R., & Miskolczy, G. (1970). Magnetic Properties of Stable Dispersions of Subdomain Magnetite Particles. Journal of Applied Physics, 41(3), 1064-1072. doi:10.1063/1.1658812Billas, I. M. L., Châtelain, A., & de Heer, W. A. (1994). Magnetism from the Atom to the Bulk in Iron, Cobalt, and Nickel Clusters. Science, 265(5179), 1682-1684. doi:10.1126/science.265.5179.1682Cordente, N., Amiens, C., Chaudret, B., Respaud, M., Senocq, F., & Casanove, M.-J. (2003). Chemisorption on nickel nanoparticles of various shapes: Influence on magnetism. Journal of Applied Physics, 94(10), 6358-6365. doi:10.1063/1.1621081Nogués, J., & Schuller, I. K. (1999). Exchange bias. Journal of Magnetism and Magnetic Materials, 192(2), 203-232. doi:10.1016/s0304-8853(98)00266-
Meditation and cognitive ageing: The role of mindfulness meditation in building cognitive reserve
Mindfulness-related meditation practices engage various cognitive skills including the ability to focus and sustain attention, which in itself requires several interacting attentional sub-functions. There is increasing behavioural and neuroscientific evidence that mindfulness meditation improves these functions and associated neural processes. More so than other cognitive training programmes, the effects of meditation appear to generalise to other cognitive tasks, thus demonstrating far transfer effects. As these attentional functions have been linked to age-related cognitive decline, there is growing interest in the question whether meditation can slow-down or even prevent such decline. The cognitive reserve hypothesis builds on evidence that various lifestyle factors can lead to better cognitive performance in older age than would be predicted by the existing degree of brain pathology. We argue that mindfulness meditation, as a combination of brain network and brain state training, may increase cognitive reserve capacity and may mitigate age-related declines in cognitive functions. We consider available direct and indirect evidence from the perspective of cognitive reserve theory. The limited available evidence suggests that MM may enhance cognitive reserve capacity directly through the repeated activation of attentional functions and of the multiple demand system and indirectly through the improvement of physiological mechanisms associated with stress and immune function. The article concludes with outlining research strategies for addressing underlying empirical questions in more substantial ways
- …