20 research outputs found

    Highly-Sensitive Thin Film THz Detector Based on Edge Metal-Semiconductor-Metal Junction

    Get PDF
    Terahertz (THz) detectors have been extensively studied for various applications such as security, wireless communication, and medical imaging. In case of metal-insulator-metal (MIM) tunnel junction THz detector, a small junction area is desirable because the detector response time can be shortened by reducing it. An edge metal-semiconductor-metal (EMSM) junction has been developed with a small junction area controlled precisely by the thicknesses of metal and semiconductor films. The voltage response of the EMSM THz detector shows the clear dependence on the polarization angle of incident THz wave and the responsivity is found to be very high (similar to 2,169 V/W) at 0.4 THz without any antenna and signal amplifier. The EMSM junction structure can be a new and efficient way of fabricating the nonlinear device THz detector with high cut-off frequency relying on extremely small junction area

    Terahertz communications for 5G and beyond

    Get PDF
    A brief discussion about the exclusive properties and applications of terahertz technology is provided in this chapter. The frequency spectrum terahertz (THz) is also discussed. The applications of terahertz in the field of sensors and terahertz for communications are covered. State-of-the-art literature starting from the early to the latest research conducted is provided and analyzed in terms of the performance of terahertz systems. Terahertz, known as Tera waves or T-waves rather than submillimeter wave, has approximately a fraction of a wavelength less than 30 μm. T-wave is heavily used in sensing and imaging applications, and has no ionization hazards and is an excellent candidate frequency band to defeat the multipaths interference problems for pulse communications. The lower quantum energy of T-waves identifies its potential applications toward near-field imaging, telecommunications, spectroscopy, and sensing, including medical diagnoses and security screening. Identification of DNA signatures including complex real-time molecular dynamics through dielectric resonance is a good example of terahertz spectroscopy instruments nowadays. This concluding chapter will not only address the practical applications of terahertz communications, but also identify the research challenges that lie ahead in terms of terahertz antenna desig

    Fano resonance engineering in mirror-symmetry-broken THz metamaterials

    Get PDF
    We introduce a comprehensive approach to the design of mirror-symmetry broken terahertz (THz) metamaterials and present both the simulation and experimental results which show the desired asymmetric Fano resonances and electromagnetic induced transparency (EIT)-like windows. With a full wave simulation, we find these asymmetry-induced resonance modes possess extremely high quality factors and they broaden with increase of the structure asymmetry. This phenomenon arises from the destructive interference of a super-radiative bright mode and a sub-radiative dark mode which can’t be excited directly. Surface current and electric field distributions are analyzed to explain the emergence of these Fano resonances. An intuitive mechanical coupled oscillator model is derived to explain the unique line-shape of such Fano resonances. Moreover, large resonant frequency tuning (50 GHz) of Fano resonance has been demonstrated by temperature induced phase change in liquid crystals. We believe that the Fano resonance in THz metamaterials may serve as a strong building block for passive or active THz elements with potential applications for future detection and sensing systems and devices.The authors would like to thank the UK Engineering and Physical Sciences Research Council (EPSRC) for the support through the Platform Grant for Liquid Crystal Photonics (EP/F00897X/1). Xuefeng Li would like to acknowledge the support from Cambridge Trust.This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by Springer

    Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes

    Get PDF
    BACKGROUND: Data are lacking on the long-term effect on cardiovascular events of adding sitagliptin, a dipeptidyl peptidase 4 inhibitor, to usual care in patients with type 2 diabetes and cardiovascular disease. METHODS: In this randomized, double-blind study, we assigned 14,671 patients to add either sitagliptin or placebo to their existing therapy. Open-label use of antihyperglycemic therapy was encouraged as required, aimed at reaching individually appropriate glycemic targets in all patients. To determine whether sitagliptin was noninferior to placebo, we used a relative risk of 1.3 as the marginal upper boundary. The primary cardiovascular outcome was a composite of cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for unstable angina. RESULTS: During a median follow-up of 3.0 years, there was a small difference in glycated hemoglobin levels (least-squares mean difference for sitagliptin vs. placebo, -0.29 percentage points; 95% confidence interval [CI], -0.32 to -0.27). Overall, the primary outcome occurred in 839 patients in the sitagliptin group (11.4%; 4.06 per 100 person-years) and 851 patients in the placebo group (11.6%; 4.17 per 100 person-years). Sitagliptin was noninferior to placebo for the primary composite cardiovascular outcome (hazard ratio, 0.98; 95% CI, 0.88 to 1.09; P<0.001). Rates of hospitalization for heart failure did not differ between the two groups (hazard ratio, 1.00; 95% CI, 0.83 to 1.20; P = 0.98). There were no significant between-group differences in rates of acute pancreatitis (P = 0.07) or pancreatic cancer (P = 0.32). CONCLUSIONS: Among patients with type 2 diabetes and established cardiovascular disease, adding sitagliptin to usual care did not appear to increase the risk of major adverse cardiovascular events, hospitalization for heart failure, or other adverse events
    corecore