33 research outputs found

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Methodology to model the energy vulnerability of households in Europe based on the current mapping of fuel poverty and transport poverty and its likely evolution until 2040

    Full text link
    Fuel poverty refers to a situation in which an individual or household is not able to meet their basic energy needs. Fuel poverty is currently growing in the European Union. Research in this field is often limited to the assessment of the current risk of fuel poverty based on energy consumptions due to housing. Urban sprawl generates a significant increase in energy consumption related to daily mobility, which generates energy poverty related to transportation needs. This article presents a methodology for modeling the current and future energy poverty of households in Europe on the basis of energy consumptions due to housing, to daily mobility and their combination. Indicators for fuel poverty and transport poverty will be based on Hills’ method, which is widely recognized internationally for fuel poverty assessment and which takes into account two thresholds: energy expenses of households and their available residual income. This article will outline the spatial modeling process of energy costs due to dwellings and mobility thanks to the coupling of a GIS tool, cadastral datasets, existing methods for the assessment of buildings and transport energy consumptions and updated databases (EPB certificates, detailed mobility surveys, data from smart meters, mobile phones and GPS). Different scenarios will be selected to predict the evolution of fuel and transport poverty until 2040 on the basis of national and European prospective studies or, alternatively, based on the historical evaluation of some key parameters and their extrapolation. The evolution of built-up areas will be model thanks to the multinomial logistic regression model (MLR) that enables to visualize the consequence of different urban densities expansion. The different parameters that will influence the evolution of fuel and transport poverty until 2040 will be highlighted (climate change, urban expansion, fuel prices, energy performance of buildings and vehicles, etc.)

    Monitoring the Organic Matter Quality Highlights the Ways in Which Organic Matter Is Removed from Wetland Soil

    No full text
    International audienceIt has long been considered that ferric phases stabilize organic matter (OM) in soils. Temporarily waterlogged soils, in which Fe is submitted to regular reductive solubilization and oxidizing precipitation, have often been used to study these processes. However, few studies have been interested in the evolution of the OM quality under such conditions. We therefore experimentally investigated the impact of a redox cycle on the quality of the dissolved organic matter (DOM) from wetland soil. The DOM quality was monitored using a combination of analyses run on the elements (%C, %N, C/N), isotopes (δ15N, δ13C), optical index (specific UV absorbance at 254 nm), and fluorescence indexes (FI, HIX, BIX). In addition, the cation and anion concentrations were also determined in the soil solutions throughout the experiment. As classically demonstrated, OM is solubilized as terrestrial aromatic molecules in the first stage of the reducing period, and then as nonaromatic molecules until the end of the reduction, in response to the dissimilatory reductive dissolution of Fe-oxyhydroxides in the soil. More interestingly, we demonstrate that the reintroduction of O2 involves significant lysis of reducing bacterial cells involving the production of small labile organic carbon which represents a significant pathway for OM degradation. Moreover, in response to the physical constraints, the newly formed Fe-OM precipitates produce small aggregates rich in aromatic OM that are expected to disseminate in the environment, representing a second significant way to remove OM

    Rare Earth Elements as tracers of active colloidal organic matter composition

    No full text
    International audienceRare earth elements (REEs) have been shown to be efficient tracers of the functional sites and/or complexes formed on humic molecules. In the present study, we test the potential of REEs to be used as tracers of the sources of humic substances (HSs). Three types of organic matter (OM) of terrestrial and microbiological origin were tested. The experiments of REEs binding to the HSs were combined with size-fractionation experiments. The REE patterns were the most fractionated in the <10 kDa fraction. For Leonardite humic acid (LHA) and Aldrich humic acid (AHA), the REE patterns were consistent with the REEs binding to strong but low density sites for a low REE/C loading. By contrast, for Pony Lake fulvic acid (PLFA), the REE pattern was similar to the REE pattern developed onto a bacteria cell surface and was attributed to the REEs binding to phosphate surface sites. Fluorescence and elemental analysis of PLFA showed that the <10 kDa fraction was the fraction with the stronger microbiological character, which suggested the REEs were probably bound to PLFA through REE-phosphate complexes. Such results therefore provide a new possibility for the use of REEs to assess an OM source without the need to perform numerous or complex analytical methodologies

    Clickable C-glycosyl scaffold for the development of a dual fluorescent and [18F]fluorinated cyanine-containing probe and preliminary in vitro/vivo evaluation by fluorescence imaging

    No full text
    International audienceConsidering the individual characteristics of positron emission tomography (PET) and optical imaging (OI) in terms of sensitivity, spatial resolution, and tissue penetration, the development of dual imaging agents for bimodal PET/OI imaging is a growing field. A current major breakthrough in this field is the design of monomolecular agent displaying both a radioisotope for PET and a fluorescent dye for OI. We took advantage of the multifunctionalities allowed by a clickable C-glycosyl scaffold to gather the different elements. We describe, for the first time, the synthesis of a cyanine-based dual PET/OI imaging probe based on a versatile synthetic strategy and its direct radiofluorination via [18F]F-C bond formation. The non-radioactive dual imaging probe coupled with two c(RGDfK) peptides was evaluated in vitro and in vivo in fluorescence imaging. The binding on αvβ3 integrin (IC50 = 16 nM) demonstrated the efficiency of the dimeric structure and PEG linkers in maintaining the affinity. In vivo fluorescence imaging of U-87 MG engrafted nude mice showed a high tumor uptake (40- and 100-fold increase for orthotopic and ectopic brain tumors, respectively, compared to healthy brain). In vitro and in vivo evaluations and resection of the ectopic tumor demonstrated the potential of the conjugate in glioblastoma cancer diagnosis and image-guided surgery
    corecore