4,909 research outputs found

    Probabilistic abstract interpretation: From trace semantics to DTMC’s and linear regression

    Get PDF
    In order to perform probabilistic program analysis we need to consider probabilistic languages or languages with a probabilistic semantics, as well as a corresponding framework for the analysis which is able to accommodate probabilistic properties and properties of probabilistic computations. To this purpose we investigate the relationship between three different types of probabilistic semantics for a core imperative language, namely Kozen’s Fixpoint Semantics, our Linear Operator Semantics and probabilistic versions of Maximal Trace Semantics. We also discuss the relationship between Probabilistic Abstract Interpretation (PAI) and statistical or linear regression analysis. While classical Abstract Interpretation, based on Galois connection, allows only for worst-case analyses, the use of the Moore-Penrose pseudo inverse in PAI opens the possibility of exploiting statistical and noisy observations in order to analyse and identify various system properties

    Quantifying Timing Leaks and Cost Optimisation

    Full text link
    We develop a new notion of security against timing attacks where the attacker is able to simultaneously observe the execution time of a program and the probability of the values of low variables. We then show how to measure the security of a program with respect to this notion via a computable estimate of the timing leakage and use this estimate for cost optimisation.Comment: 16 pages, 2 figures, 4 tables. A shorter version is included in the proceedings of ICICS'08 - 10th International Conference on Information and Communications Security, 20-22 October, 2008 Birmingham, U

    Rejection Properties of Stochastic-Resonance-Based Detectors of Weak Harmonic Signals

    Full text link
    In (V. Galdi et al., Phys. Rev. E57, 6470, 1998) a thorough characterization in terms of receiver operating characteristics (ROCs) of stochastic-resonance (SR) detectors of weak harmonic signals of known frequency in additive gaussian noise was given. It was shown that strobed sign-counting based strategies can be used to achieve a nice trade-off between performance and cost, by comparison with non-coherent correlators. Here we discuss the more realistic case where besides the sought signal (whose frequency is assumed known) further unwanted spectrally nearby signals with comparable amplitude are present. Rejection properties are discussed in terms of suitably defined false-alarm and false-dismissal probabilities for various values of interfering signal(s) strength and spectral separation.Comment: 4 pages, 5 figures. Misprints corrected. PACS numbers added. RevTeX

    Oncogenic K-Ras suppresses IP<sub>3</sub>-dependent Ca<sup>2+</sup> release through remodeling of IP<sub>3</sub>Rs isoform composition and ER luminal Ca<sup>2+</sup> levels in colorectal cancer cell lines

    Get PDF
    The GTPase Ras is a molecular switch engaged downstream of G-protein coupled receptors and receptor tyrosine inases that controls multiple cell fate-determining signalling athways. Ras signalling is frequently deregulated in cancer underlying associated changes in cell phenotype. Although Ca2+ signalling pathways control some overlapping functions with Ras, and altered Ca2+ signalling pathways are emerging as important players in oncogenic transformation, how Ca2+ signalling is remodelled during transformation and whether it has a causal role remains unclear. We have investigated Ca2+ signalling in two human colorectal cancer cell lines and their isogenic derivatives in which the mutated K-Ras allele (G13D) has been deleted by homologous recombination. We show that agonist-induced Ca2+ release from intracellular stores is enhanced by loss of K-RasG13D through an increase in the ER store content and a modification of IP3R subtype abundance. Consistently, uptake of Ca2+ into mitochondria and sensitivity to apoptosis was enhanced as a result of KRasG13D loss. These results suggest that suppression of Ca2+ signalling is a common response to naturally occurring levels of K-RasG13D that contributes to a survival advantage during oncogenic transformation

    An Algorithmic Approach to Quantum Field Theory

    Full text link
    The lattice formulation provides a way to regularize, define and compute the Path Integral in a Quantum Field Theory. In this paper we review the theoretical foundations and the most basic algorithms required to implement a typical lattice computation, including the Metropolis, the Gibbs sampling, the Minimal Residual, and the Stabilized Biconjugate inverters. The main emphasis is on gauge theories with fermions such as QCD. We also provide examples of typical results from lattice QCD computations for quantities of phenomenological interest.Comment: 44 pages, to be published in IJMP

    On dynamical probabilities, or: how to learn to shoot straight

    Get PDF
    © IFIP International Federation for Information Processing 2016.In order to support, for example, a quantitative analysis of various algorithms, protocols etc. probabilistic features have been introduced into a number of programming languages and calculi. It is by now quite standard to define the formal semantics of (various) probabilistic languages, for example, in terms of Discrete Time Markov Chains (DTMCs). In most cases however the probabilities involved are represented by constants, i.e. one deals with static probabilities. In this paper we investigate a semantical framework which allows for changing, i.e. dynamic probabilities which is still based on time-homogenous DTMCs, i.e. the transition matrix representing the semantics of a program does not change over time

    Monte Carlo Performance Studies of Candidate Sites for the Cherenkov Telescope Array

    Full text link
    The Cherenkov Telescope Array (CTA) is the next-generation gamma-ray observatory with sensitivity in the energy range from 20 GeV to beyond 300 TeV. CTA is proposed to consist of two arrays of 40-100 imaging atmospheric Cherenkov telescopes, with one site located in each of the Northern and Southern Hemispheres. The evaluation process for the candidate sites for CTA is supported by detailed Monte Carlo simulations, which take different attributes like site altitude and geomagnetic field configuration into account. In this contribution we present the comparison of the sensitivity and performance of the different CTA site candidates for the measurement of very-high energy gamma rays.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589
    • …
    corecore