50 research outputs found

    Persistent resistance to HIV-1 infection in CD4 T cells from exposed uninfected Vietnamese individuals is mediated by entry and post-entry blocks

    Get PDF
    BACKGROUND: We have previously reported that CD4 T cells from some exposed uninfected (EU) Vietnamese intravenous drug users are relatively resistant to HIV infection in vitro. Here, we further characterized the restriction of viral replication in CD4 T cells from five EUs and assessed its persistence in serial samples. RESULTS: CD4 T cells and/or PBMC sampled during a period of between 2 and 6 years were challenged with replication-competent HIV-1 and other retroviral particles pseudotyped with envelope proteins of various tropisms. CCR5 expression and function in resistant CD4 T cells was evaluated. The step at which HIV-1 replication is restricted was investigated by real-time PCR quantification of HIV-1 reverse transcripts. We identified three patterns of durable HIV-1 restriction in EU CD4 T cells. CD4 T cells from four of the five EU subjects were resistant to HIV-1 R5 infection. In two cases this resistance was associated with low CCR5 surface expression, which was itself associated with heterozygous CCR5 mutations. In the other two cases, CD4 T cells were resistant to HIV-1 R5 infection despite normal CCR5 expression and signaling function, and normal β-chemokine secretion upon CD4 T cell activation. Instead, restriction appeared to be due to enhanced CD4 T cell sensitivity to β-chemokines in these two subjects. In the fifth EU subject the restriction involved post-entry steps of viral replication and affected not only HIV-1 but also other lentiviruses. The restriction was not overcome by a high viral inoculum, suggesting that it was not mediated by a saturable inhibitory factor. CONCLUSION: Various constitutive mechanisms of CD4 T cell resistance to HIV-1 infection, affecting entry or post-entry steps of viral replication, are associated with resistance to HIV-1 in subjects who remain uninfected despite long-term high-risk behavior

    Reduced CD4 T cell activation and in vitro susceptibility to HIV-1 infection in exposed uninfected Central Africans

    Get PDF
    BACKGROUND: Environmentally driven immune activation was suggested to contribute to high rates of HIV-1 infection in Africa. We report here a study of immune activation markers and susceptibility to HIV-1 infection in vitro of forty-five highly exposed uninfected partners (EUs) of HIV-1 infected individuals in Central African Republic, in comparison with forty-four low-risk blood donors (UCs). RESULTS: Analysis of T lymphocyte subsets and activation markers in whole blood showed that the absolute values and the percentage of HLA-DR(+)CD4 T cells and of CCR5(+)CD4 T cells were lower in the EUs than in the UCs (p = 0.0001). Mutations in the CCR5 coding region were not found in either group. Susceptibility to in vitro infection of unstimulated peripheral blood mononuclear cells, prior of PHA activation, was decreased in EUs compared to UCs, either using a CXCR4-tropic or a CCR5-tropic HIV-1 strain (p = 0.02 and p = 0.05, respectively). Levels of MIP-1β, but not of MIP-1α or RANTES, in the supernatants of PHA-activated PBMC, were higher in the EUs than in the UCs (p = 0.007). CONCLUSION: We found low levels of CD4 T cell activation and reduced PBMC susceptibility to HIV-1 infection in Central African EUs, indicating that both may contribute to the resistance to HIV-1 infection

    Dendritic Cells from HIV Controllers Have Low Susceptibility to HIV-1 Infection In Vitro but High Capacity to Capture HIV-1 Particles

    Get PDF
    ANRS CO21 CODEX cohortInternational audienceHIV controllers (HICs), rare HIV-1 infected individuals able to control viral replication without antiretroviral therapy, are characterized by an efficient polyfunctional and cytolytic HIV-specific CD8+ T cell response. The mechanisms underlying the induction and maintenance of such response in many HICs despite controlled viremia are not clear. Dendritic cells play a crucial role in the generation and reactivation of T cell responses but scarce information is available on those cells in HICs. We found that monocyte derived dendritic cells (MDDCs) from HICs are less permissive to HIV-1 infection than cells from healthy donors. In contrast MDDCs from HICs are particularly efficient at capturing HIV-1 particles when compared to cells from healthy donors or HIV-1 patients with suppressed viral load on antiretroviral treatment. MDDCs from HICs expressed on their surface high levels of syndecan-3, DC-SIGN and MMR, which could cooperate to facilitate HIV-1 capture. The combination of low susceptibility to HIV-1 infection but enhanced capacity to capture particles might allow MDDCs from HICs to preserve their function from the deleterious effect of infection while facilitating induction of HIV-specific CD8+ T cells by cross-presentation in a context of low viremia

    Positive Regulation of CXCR4 Expression and Signaling by Interleukin-7 in CD4(+) Mature Thymocytes Correlates with Their Capacity To Favor Human Immunodeficiency X4 Virus Replication

    No full text
    The emergence of X4 human immunodeficiency virus type 1 (HIV-1) variants in infected individuals is associated with poor prognosis. One of the possible causes of this emergence might be the selection of X4 variants in some specific tissue compartment. We demonstrate that the thymic microenvironment favors the replication of X4 variants by positively modulating the expression and signaling of CXCR4 in mature CD4(+) CD8(−) CD3(+) thymocytes. Here, we show that the interaction of thymic epithelial cells (TEC) with these thymocytes in culture induces an upregulation of CXCR4 expression. The cytokine secreted by TEC, interleukin-7 (IL-7), increases cell surface expression of CXCR4 and efficiently overcomes the downregulation induced by SDF-1α, also produced by TEC. IL-7 also potentiates CXCR4 signaling, leading to actin polymerization, a process necessary for virus entry. In contrast, in intermediate CD4(+) CD8(−) CD3(−) thymocytes, the other subpopulation known to allow virus replication, TEC or IL-7 has little or no effect on CXCR4 expression and signaling. CCR5 is expressed at similarly low levels in the two thymocyte subpopulations, and neither its expression nor its signaling was modified by the cytokines tested. This positive regulation of CXCR4 by IL-7 in mature CD4(+) thymocytes correlates with their high capacity to favor X4 virus replication compared with intermediate thymocytes or peripheral blood mononuclear cells. Indeed, we observed an enrichment of X4 viruses after replication in thymocytes initially infected with a mixture of X4 (NL4-3) and R5 (NLAD8) HIV strains and after the emergence of X4 variants from an R5 primary isolate during culture in mature thymocytes

    Potential role for HIV-specific CD38-/HLA-DR+ CD8+ T cells in viral suppression and cytotoxicity in HIV controllers.

    No full text
    BACKGROUND:HIV controllers (HIC) are rare HIV-1-infected patients who exhibit spontaneous viral control. HIC have high frequency of CD38-/HLA-DR+ HIV-specific CD8+ T cells. Here we examined the role of this subset in HIC status. MATERIALS AND METHODS:We compared CD38-/HLA-DR+ CD8+ T cells with the classical CD38+/HLA-DR+ activated phenotype in terms of 1) their activation status, reflected by CD69, CD25, CD71, CD40 and Ki67 expression, 2) functional parameters: Bcl-2 expression, proliferative capacity, and IFN-γ and IL-2 production, and 3) cytotoxic activity. We also investigated how this particular profile is generated. RESULTS:Compared to CD38+/HLA-DR+ cells, CD38-/HLA-DR+ cells exhibited lower expression of several activation markers, better survival capacity (Bcl-2 MFI, 367 [134-462] vs 638 [307-747], P = 0.001), higher frequency of polyfunctional cells (15% [7%-33%] vs 21% [16%-43%], P = 0.0003), greater proliferative capacity (0-fold [0-2] vs 3-fold [2]-[11], P = 0.007), and higher cytotoxicity in vitro (7% [3%-11%] vs 13% [6%-22%], P = 0.02). The CD38-/HLA-DR+ profile was preferentially generated in response to low viral antigen concentrations. CONCLUSIONS:These data highlight the role of CD38-/HLA-DR+ HIV-specific CD8+ T cell cytotoxicity in HIC status and provide insights into the mechanism by which they are generated. Induction of this protective CD8+ subset may be important for vaccine strategies

    HIV controllers exhibit potent CD8 T cell capacity to suppress HIV infection ex vivo and peculiar cytotoxic T lymphocyte activation phenotype

    No full text
    International audienceSome rare HIV-1-infected individuals, referred to as HIV controllers (HIC), have persistently undetectable plasma viral load in the absence of therapy. This control of HIV-1 replication has been associated with a strong, multifunctional specific CD8(+) T cell response. However, no direct link between this immune response and the control of viremia has so far been provided. We investigated parameters of specific CD8(+) T cell response and in vitro susceptibility to HIV-1 infection in 11 HIC. We found high frequencies of HIV-specific CD8(+) T cells. Interestingly, these cells expressed the activation marker HLA-DR but not CD38. This unique phenotype differentiates HIV-specific CD8(+) T cells from HIC and noncontroller subjects and likely reflects a high potential to expand upon exposure to antigen and a capacity to exert effector functions. Accordingly, although CD4(+) T cells from HIC were fully susceptible to HIV-1 superinfection, their CD8(+) T cells effectively suppressed HIV-1 infection. Remarkably, this potent anti-HIV activity was observed without prior stimulation of CD8(+) T cells. This activity was not mediated by secreted inhibitory factors but was due to the elimination of infected CD4(+) T cells and was observed only with autologous CD4(+) T cells, indicating an HLA-restricted cytotoxic mechanism. This constitutive antiviral capacity of CD8(+) T cells could account for the control of viral replication in HIC

    The engagement of activating FcgammaRs inhibits primate lentivirus replication in human macrophages.

    No full text
    We previously reported that the stimulation of monocyte-derived macrophages (MDM) by plate-bound i.v. Igs inhibits HIV-1 replication. In this study, we show that IgG immune complexes also suppress HIV-1 replication in MDMs and that activating receptors for the Fc portion of IgG-FcgammaRI, FcgammaRIIA, and FcgammaRIII-are responsible for the inhibition. MDM stimulation through FcgammaRs induces activation signals and the secretion of HIV-1 modulatory cytokines, such as M-CSF, TNF-alpha, and macrophage-derived chemokine. However, none of these cytokines contribute to HIV-1 suppression. HIV-1 entry and postintegration steps of viral replication are not affected, whereas reduced levels of reverse transcription products and of integrated proviruses, as determined by real-time PCR analysis, account for the suppression of HIV-1 gene expression in FcgammaR-activated MDMs. We found that FcgammaR-dependent activation of MDMs also inhibits the replication of HIV-2, SIVmac, and SIVagm, suggesting a common control mechanism for primate immunodeficiency lentiviruses in activated macrophages

    HIV Controllers Have Low Inflammation Associated with a Strong HIV-Specific Immune Response in Blood

    No full text
    International audienceHIV controllers (HIC) maintain control of HIV replication without combined antiretroviral treatment (cART). The mechanisms leading to virus control are not fully known. We used gene expression and cellular analyses to compare HIC and HIV-1-infected individuals under cART. In the blood, HIC are characterized by a low inflammation, a downmodulation of natural killer inhibitory cell signaling, and an upregulation of T cell activation gene expression. This balance that persists after stimulation of cells with HIV antigens was consistent with functional analyses showing a bias toward a Th1 and cytotoxic T cell response and a lower production of inflammatory cytokines. Taking advantage of the characterization of HIC based upon their CD8+ T lymphocyte capacity to suppress HIV-infection, we show here that unsupervised analysis of differentially expressed genes fits clearly with this cytotoxic activity, allowing the characterization of a specific signature of HIC. These results reveal significant features of HIC making the bridge between cellular function, gene signatures, and the regulation of inflammation and killing capacity of HIV-specific CD8+ T cells. Moreover, these genetic profiles are consistent through analyses performed from blood to peripheral blood mononuclear cells and T cells. HIC maintain strong HIV-specific immune responses with low levels of inflammation. Our findings may pave the way for new immunotherapeutic approaches leading to strong HIV-1-specific immune responses while minimizing inflammation.IMPORTANCE A small minority of HIV-infected patients, called HIV controllers (HIC), maintains spontaneous control of HIV replication. It is therefore important to identify mechanisms that contribute to the control of HIV replication that may have implications for vaccine design. We observed a low inflammation, a downmodulation of natural killer inhibitory cell signaling, and an upregulation of T-cell activation gene expression in the blood of HIC compared to patients under combined antiretroviral treatment. This profile persists following in vitro stimulation of peripheral blood mononuclear cells with HIV antigens, and was consistent with functional analyses showing a Th1 and cytotoxic T cell response and a lower production of inflammatory cytokines. These results reveal significant features of HIC that maintain strong HIV-specific immune responses with low levels of inflammation. These findings define the immune status of HIC that is probably associated with the control of viral load

    CD8 T-cells from most HIV-infected patients lack ex vivo HIV-suppressive capacity during acute and early infection

    Get PDF
    International audienceThe strong CD8+ T-cell-mediated HIV-1-suppressive capacity found in a minority of HIV-infected patients in chronic infection is associated with spontaneous control of viremia. However, it is still unclear whether such capacities were also present earlier in the CD8+ T cells from non controller patients and then lost as a consequence of uncontrolled viral replication. We studied 50 patients with primary HIV-1-infection to determine whether strong CD8+ T-cell-mediated HIV suppression is more often observed at that time. Despite high frequencies of polyfunctional HIV-specific CD8+ T-cells and a strong CD4+ T-helper response, CD8+ T-cells from 48 patients lacked strong HIV-suppressive capacities ex vivo. This indicates that the superior HIV-suppressive capacity of CD8+ T-cells from HIV controllers is not a general characteristic of the HIV-specific CD8+ T cell response in primary HIV infection

    Both HLA-B*57 and plasma HIV RNA levels contribute to the HIV-specific CD8+ T cell response in HIV controllers

    No full text
    International audienceCD8(+) T cell responses are thought to play an important role during HIV infection, particularly in HIV controllers (HIC) in whom viral replication is spontaneously controlled without any treatment. We have demonstrated that CD8(+) T cells from these subjects are able to suppress viral replication in vitro. In parallel, HIV-specific CD8(+) responses were shown to be strong and of high quality, with proliferative abilities and cytotoxic capacities, in HIC. The HLA-B*57 allele, which is associated with a better clinical outcome in HIV infection, is overrepresented in HIC. However, we showed that these patients constitute a heterogeneous group that includes subjects who present weak suppression of viral replication in vitro and HIV-specific responses. We performed an extensive study of 101 HIC (49 HLA-B*57(+) and 52 HLA-B*57(-)) to determine the impact of HLA-B*57 on the HIV-specific CD8(+) response. The HLA-B*57-restricted response displayed better qualitative features, such as higher functional avidity, higher proliferation capacity, and a higher level of cytokine production, than responses not restricted by HLA-B*57. However, the highest frequencies of HIV-specific CD8(+) T cells were observed only in a subset of HLA-B*57(+) subjects. They were tightly associated with the ability to suppress viral replication in vitro. In contrast, the subset of HLA-B*57(+) subjects with a weak ability to suppress viral replication had significantly lower ultrasensitive viral loads than all the other groups of controllers. In conclusion, both HLA-B*57 and the amount of ultrasensitive viral load seem to play a role in HIV-specific CD8(+) T cell responses in HIC
    corecore