80 research outputs found

    Uncertainty assessment of surface net radiation derived from Landsat images

    Get PDF
    The net radiation flux available at the Earth's surface drives evapotranspiration, photosynthesis and other physical and biological processes. The only cost-effective way to capture its spatial and temporal variability at regional and global scales is remote sensing. However, the accuracy of net radiation derived from remote sensing data has been evaluated up to now over a limited number of in situ measurements and ecosystems. This study aims at evaluating estimates and uncertainties on net radiation derived from Landsat-7 images depending on reliability of the input surface variables albedo, emissivity and surface temperature. The later includes the reliability of remote sensing information (spectral reflectances and top of canopy brightness temperature) and shortwave and longwave incoming radiations. Primary information describing the surface is derived from remote sensing observations. Surface albedo is estimated from spectral reflectances using a narrow-to-broadband conversion method. Land surface temperature is retrieved from top of canopy brightness temperature by accounting for land surface emissivity and reflection of atmospheric radiation; and emissivity is estimated using a relationship with a vegetation index and a spectral database of soil and plant canopy properties in the study area. The net radiation uncertainty is assessed using comparison with ground measurements over the Crau–Camargue and lower Rhone valley regions in France. We found Root Mean Square Errors between retrievals and field measurements of 0.25–0.33 (14–19%) for albedo, ~ 1.7 K for surface temperature and ~ 20 W·m− 2 (5%) for net radiation. Results show a substantial underestimation of Landsat-7 albedo (up to 0.024), particularly for estimates retrieved using the middle infrared, which could be due to different sources: the calibration of field sensors, the correction of radiometric signals from Landsat-7 or the differences in spectral bands with the sensors for which the models where originally derived, or the atmospheric corrections. We report a global uncertainty in net radiation of 40–100 W·m− 2 equally distributed over the shortwave and longwave radiation, which varies spatially and temporally depending on the land use and the time of year. In situ measurements of incoming shortwave and longwave radiation contribute the most to uncertainty in net radiation (10–40 W·m− 2 and 20–30 W·m− 2, respectively), followed by uncertainties in albedo (< 25 W·m− 2) and surface temperature (~ 8 W·m− 2). For the latter, the main factors were the uncertainties in top of canopy reflectances (< 10 W·m− 2) and brightness temperature (5–7 W·m− 2). The generalization of these results to other sensors and study regions could be considered, except for the emissivity if prior knowledge on its characterization is not available

    Measurement of the tau lepton lifetime

    Get PDF

    Limit on Bs0B^0_s oscillation using a jet charge method

    Get PDF
    A lower limit is set on the B_{s}^{0} meson oscillation parameter \Delta m_{s} using data collected from 1991 to 1994 by the ALEPH detector. Events with a high transverse momentum lepton and a reconstructed secondary vertex are used. The high transverse momentum leptons are produced mainly by b hadron decays, and the sign of the lepton indicates the particle/antiparticle final state in decays of neutral B mesons. The initial state is determined by a jet charge technique using both sides of the event. A maximum likelihood method is used to set a lower limit of \, \Delta m_{s}. The 95\% confidence level lower limit on \Delta m_s ranges between 5.2 and 6.5(\hbar/c^{2})~ps^{-1} when the fraction of b quarks from Z^0 decays that form B_{s}^{0} mesons is varied from 8\% to 16\%. Assuming that the B_{s}^{0} fraction is 12\%, the lower limit would be \Delta m_{s} 6.1(\hbar/c^{2})~ps^{-1} at 95\% confidence level. For x_s = \Delta m_s \, \tau_{B_s}, this limit also gives x_s 8.8 using the B_{s}^{0} lifetime of \tau_{B_s} = 1.55 \pm 0.11~ps and shifting the central value of \tau_{B_s} down by 1\sigma

    Measurement of the Bs0^0_s lifetime and production rate with Ds−l+^-_s l^+ combinations in Z decays

    Get PDF
    The lifetime of the \bs meson is measured in approximately 3 million hadronic Z decays accumulated using the ALEPH detector at LEP from 1991 to 1994. Seven different \ds decay modes were reconstructed and combined with an opposite sign lepton as evidence of semileptonic \bs decays. Two hundred and eight \dsl candidates satisfy selection criteria designed to ensure precise proper time reconstruction and yield a measured \bs lifetime of \mbox{\result .} Using a larger, less constrained sample of events, the product branching ratio is measured to be \mbox{\pbrresult

    Measurement of the tau lepton lifetime

    No full text

    Measurement of the tau lepton lifetime

    Get PDF

    Tau leptonic branching ratios

    No full text

    Measurement of the tau lepton lifetime

    No full text

    Measurement of the tau lepton lifetime

    No full text

    The forward-backward asymmetry for charm quarks at the Z pole

    No full text
    • 

    corecore