116 research outputs found

    Circulating MicroRNA Profiling in Cancer Biomarker Discovery

    Get PDF
    MicroRNAs (miRNAs) are a class of small non-coding RNA molecules of approximately 22 nucleotides that regulate gene expression at the post-transcriptional level. Alterations in miRNA expression patterns correlate with a wide spectrum of pathological conditions, including cancer. miRNA profiling was mostly performed, in solid tissues, obtained by invasive diagnostic procedures. However, miRNAs in biofluids, such as serum and plasma, show high stability resulting from the formation of complexes with specific protein or incorporation within circulating exosomes or other microvesicles. Circulating miRNAs could be reliable biomarkers for early-stage cancer diagnosis, prognosis and response to therapy. In this chapter, we analyze the major pre-analytical and analytical challenges in experimental design for circulating miRNA detection, focusing on exosome fraction and microarray-based approach

    BRCA1/2 genetic background-based therapeutic tailoring of human ovarian cancer: hope or reality?

    Get PDF
    Ovarian epithelial tumors are an hallmark of hereditary cancer syndromes which are related to the germ-line inheritance of cancer predisposing mutations in BRCA1 and BRCA2 genes. Although these genes have been associated with multiple different physiologic functions, they share an important role in DNA repair mechanisms and therefore in the whole genomic integrity control. These findings have risen a variety of issues in terms of treatment and prevention of breast and ovarian tumors arising in this context. Enhanced sensitivity to platinum-based anticancer drugs has been related to BRCA1/2 functional loss. Retrospective studies disclosed differential chemosensitivity profiles of BRCA1/2-related as compared to "sporadic" ovarian cancer and led to the identification of a "BRCA-ness" phenotype of ovarian cancer, which includes inherited BRCA1/2 germ-line mutations, a serous high grade histology highly sensitive to platinum derivatives. Molecularly-based tailored treatments of human tumors are an emerging issue in the "era" of molecular targeted drugs and molecular profiling technologies. We will critically discuss if the genetic background of ovarian cancer can indeed represent a determinant issue for decision making in the treatment selection and how the provocative preclinical findings might be translated in the therapeutic scenario. The presently available preclinical and clinical evidence clearly indicates that genetic background has an emerging role in treatment individualization for ovarian cancer patients

    Single nucleotide polymorphisms of ABCC5 and ABCG1 transporter genes correlate to irinotecan-associated gastrointestinal toxicity in colorectal cancer patients: a DMET microarray profiling study.

    Get PDF
    Abstract Recent findings have disclosed the role of UDP-glucuronosyltransferase (UGT) 1A1*28 on the haematological toxicity induced by irinotecan (CPT-11), a drug commonly used in the treatment of metastatic colorectal cancer (mCRC). We investigated the pharmacogenomic profile of irinotecan-induced gastrointestinal (GI) toxicity by the novel drug-metabolizing enzyme and transporter (DMET) microarray genotyping platform. Twenty-six mCRC patients who had undergone to irinotecan-based chemotherapy were enrolled in a case (patients experiencing > grade 3 gastrointestinal, (GI) toxicity) - control (matched patients without GI toxicity) study. A statistically significant difference of SNP genotype distribution was found in the case versus control group. The homozygous genotype C/C in the (rs562) ABCC5 gene occurred in 6/9 patients with GI toxicity versus 1/17 patients without GI toxicity (P=0.0022). The homozygous genotype G/G in the (rs425215) ABCG1 was found in 7/9 patients with GI toxicity versus 4/17 patients without GI toxicity (P=0.0135). The heterozygous genotype G/A in the 388G>A (rs2306283) OATP1B1/SLCO1B1 was found in 3/9 patients with grade > 3 GI toxicity versus 14/17 patients without GI toxicity (P=0.0277). DNA extracted from peripheral blood cells was genotyped by DMET Plus chip on Affymetrix array system. Genotype association was calculated by Fisher's exact test (two tailed) and relevant SNPs were further analyzed by direct sequencing. We have identified 3 SNPs mapping in ABCG1, ABCC5 and OATP1B1/SLCO1B1 transporter genes associated with GI toxicity induced by irinotecan in mCRC patients expanding the available knowledge of irinogenomics. The DMET microarray platform is an emerging technology for easy identification of new genetic variants for personalized medicine

    Phase II trial of bevacizumab and dose/dense chemotherapy with cisplatin and metronomic daily oral etoposide in advanced non-small-cell-lung cancer patients.

    Get PDF
    Bevacizumab, is a humanized monoclonal antibody to vasculo-endothelial- growth-factor, with anticancer activity in non-small-cell-lung cancer (NSCLC) patients. Our previous results from a dose/finding phase I trial in NSCLC patients, demonstrated the anti-angiogenic effects and toxicity of a newest bevacizumab-based combination with fractioned cisplatin and daily oral etoposide. We designed a phase II trial to evaluate in advanced NSCLC patients the antitumor activity and the safety of this novel regimen. In particular, 45 patients (36 males and 9 females), with a mean age of 54 years, an ECOG ≤2, stage III B/IV and NSCLC (28 adenocarcinomas, 11 squamous-cell carcinomas, 2 large-cell carcinomas, 4 undifferentiated carcinomas), were enrolled. They received cisplatin (30 mg/sqm, days 1-3), oral etoposide (50 mg, days 1-15) and bevacizumab (5 mg/kg, day 3) every 3 weeks (mPEBev regimen). Patients who achieved an objective response or stable disease received maintenance treatment with bevacizumab in combination with erlotinib until progression. Grade I-II hematological, mucosal toxicity and alopecia were the most common adverse events. The occurrence of infections (17%), thromboembolic events (4.4%) and severe mood depression (6.7%) was also recorded. A partial response was achieved in 31 (68.8%) patients, disease remained stable in 8 (17.8%) and disease progressed in 6 (13.3%) with a progression-free-survival of 9.53 months (95% CI, 7.7-11.46). Our bio-chemotherapy regimen resulted very active in advanced NSCLC, however, the toxicity associated with the treatment requires strict selection of the patients to enroll in future studies. © 2011 Landes Bioscience

    Dose/dense metronomic chemotherapy with fractioned cisplatin and oral daily etoposide enhances the anti-angiogenic effects of bevacizumab and has strong antitumor activity in advanced non-small-cell-lung cancer patients.

    Get PDF
    Background: We designed a translational clinical trial to investigate whether a dose/dense chemotherapy regimen is able to enhance in patients with non-small-cell-lung-cancer, the anti-angiogenic, and anti-tumor activity of bevacizumab, a murine/human monoclonal antibody to the vasculo-endothelial-growth-factor (VEGF) Patients and Methods: Forty-eight patients (42 males and 6 females) with stage IIIB/IV non-small-cell-lung-cancer, a mean age of 68 years, and ECOG ≤ 2 were enrolled in the study. They received every three weeks fractioned cisplatinum (30 mg/sqm, days 1-3) and oral etoposide (50 mg, days 1-15) and were divided in 5 cohorts receiving different bevacizumab dosages [0; 2.5; 5; 7.5; and 10 mg/kg] on the day 3. Results: The combined treatment was able of inducing a significant decline in the blood-perfusion of primary tumor (NMR-study); in serum levels of VEGF, angiopoietin-1, thrombospondin-1; and in the number of VEGF-transporting cells. In the group of 40 patients who received bevacizumab ther..

    Molecular Characterization of Cancer Associated Fibroblasts in Prostate Cancer

    Get PDF
    Background: Stromal components surrounding epithelial cancer cells seem to play a pivotal role during epithelial-to-mesenchymal transition (EMT), tumor invasion, and metastases. To identify the molecular mechanisms underlying tumor–stroma interactions may yield novel therapeutic targets for prostate cancer. Methods: Gene expression profile of prostate-cancer associated fibroblast (PCAF) and prostate non-cancer associated fibroblast (PNAF) cells isolated from radical prostatectomy was performed by Illumina, analyzed, and further processed by Ingenuity®: IPA® software. qRT-PCR was performed on an independent set of 17 PCAF, 12 PNAF, and 12 fibroblast cell lines derived from patients with benign prostatic hyperplasia (BPHF). Results: Using microarray analysis, we found six upregulated genes and two downregulated genes in PCAFs compared to PNAFs. To validate microarray results, we performed qRT-PCR for the most significantly regulated genes involved in the modulation of proliferation and androgen resistance on an independent set of PNAF, PCAF, and BHPF samples. We confirmed the increased expression of SCARB1, MAPK3K1, and TGF-β as well as the decreased expression of S100A10 in PCAFs compared to PNAFs and BPHFs. Conclusions: These results provide strong evidence that the observed changes in the gene expression profile of PCAFs can contribute to functional alteration of adjacent prostate cancer cells

    Molecular Characterization of Cancer Associated Fibroblasts in Prostate Cancer

    Get PDF
    Background: Stromal components surrounding epithelial cancer cells seem to play a pivotal role during epithelial-to-mesenchymal transition (EMT), tumor invasion, and metastases. To identify the molecular mechanisms underlying tumor-stroma interactions may yield novel therapeutic targets for prostate cancer. Methods: Gene expression profile of prostate-cancer associated fibroblast (PCAF) and prostate non-cancer associated fibroblast (PNAF) cells isolated from radical prostatectomy was performed by Illumina, analyzed, and further processed by Ingenuity (R) : IPA (R) software. qRT-PCR was performed on an independent set of 17 PCAF, 12 PNAF, and 12 fibroblast cell lines derived from patients with benign prostatic hyperplasia (BPHF). Results: Using microarray analysis, we found six upregulated genes and two downregulated genes in PCAFs compared to PNAFs. To validate microarray results, we performed qRT-PCR for the most significantly regulated genes involved in the modulation of proliferation and androgen resistance on an independent set of PNAF, PCAF, and BHPF samples. We confirmed the increased expression of SCARB1, MAPK3K1, and TGF-beta as well as the decreased expression of S100A10 in PCAFs compared to PNAFs and BPHFs. Conclusions: These results provide strong evidence that the observed changes in the gene expression profile of PCAFs can contribute to functional alteration of adjacent prostate cancer cells
    • …
    corecore