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1. Introduction 

1.1. Overview of MiRNA biology 

MicroRNAs are small (22 nucleotides), noncoding, double-stranded RNA molecules, that 

can regulate gene expression primarily by reducing the abilities of specific mRNAs to be 

transduced to their encoded proteins. The first recognized miRNA found in 1993 is lin-4, 

that controls the cell fate at larval stages in Caenorhabditis elegans [1, 2]. Bioinformatic 

approaches suggested that the mammalian miRNA repertoire is involved in regulation of 

30% of all protein-encoding genes [3].  

Human miRNAs are encoded within introns of coding genes and introns and exons of 

noncoding transcripts [4]. Generation of mature miRNAs is due to a series of 

endonucleolytic steps starting from long primary transcripts (pri-miRNAs). The pri-

miRNAs are cleaved in the nucleus to a_70 nt intermediate with the typical stem-loop 

hairpin structure, precursor miRNAs (pre-miRNAs) by the Drosha- DGCR8 microprocessor 

complex [5, 6]. The pre-miRNAs are further processed into_22 nt double-stranded miRNA 

duplex by the cytoplasmic RNase III enzyme Dicer [7]. One strand of this miRNA duplex 

(the guide strand) incorporates into a large protein complex, RNA-induced silencing 

complex (RISC), formed by Dicer, TRBP (a dsRNA-binding domain protein) and Ago2 (the 

Argonaute protein 2), and finally becomes the mature miRNA. The other strand, the so-

called passenger strand, is degraded. 

Each mature miRNA interacts with a specific mRNA in the mRNA’s 3´-untranslated region 

(3´UTR), leading to translational repression or mRNA degradation. Besides, some evidences 

have shown that miRNA can increase translation [8].  
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2. The role of MiRNAs in hematopoietic cell development 

The development of hematopoietic and immune system requires an integrated network of 

survival, proliferation and apoptotic signals that are finely tuned along differentiation. 

miRNAs represent efficient modulators of such a system as they can affect the expression 

of multiple genes at different stages. The identification of putative miRNA involved in 

hematopoietic ontogeny has been one of primary topic of miRNA studies since their 

discovery. To clarify the role of specific miRNAs, Chen et al. [9] first cloned about 100 

previously identified miRNAs and analyzed only those expressed in hematopoietic cells 

(miR181, 142 and 223). miR181 was found in lineage negative (Lin -) mouse bone marrow 

undifferentiated cells and strongly upregulated in mature B cells and within the thymus; 

miR142 was more ubiquitously expressed, while 223 was mostly confined to myeloid 

lineage. miR181 was then cloned into a GFP gene carrying retroviral vector and 

ectopically expressed in Lin- bone marrow cells. Infected cells were then followed in vitro 

to check their lineage commitment. A preferential development of B cells was observed. 

When Lin- miR181+ cells were transplanted in irradiated mice, lymphoid repopulation 

showed a prevalence of B cell population as compared to control (80% vs 32%, 

respectively). This study was of primary relevance as it has shown the effects of a single 

miRNA in lymphopoiesis and addressed a method to study next candidate miRNAs. De 

Yebenes and colleagues [10] observed that miR181b is involved also in immunoglobulin 

class switch at activated B cell level. Hence, miR 181 family is involved in early (switch 

from pro B cell to pre B cell) and late (from centroblasts to activated B cells) stages of B 

cell development.  

The expression of miR181 in mouse thymus prompted investigators to evaluate their role in 

T cell selection. Interestingly, miR181 is expressed at higher levels in early T cell 

differentiation as its expression drops from double negative/double positive cells to single 

positive CD4/CD8 cells [11] MiR17-92 cluster (miR17, 18a, 19a, 20a, 19b and 92) has been 

implicated in B cell lymphopoiesis (transition pro B to pre B cells) by Ventura et al. [12]. 

Interestingly, in mice this cluster is homologous to the miR-106a-63 (except miR18 and 19), 

although only mice lacking miR17-92 show a relevant phenotype, including B cell 

differentation arrest. It is likely that miR17-92 cluster controls apoptotic signals through 

suppression of Bim and PTEN [13] miR-150 has been involved in the transition pro B to pre 

B cells through suppression of c-Myb [14-16], a transcription factor that leads this phase. 

miR-150 is strongly upregulated along T cell development beginning from double positive 

stage and modulates expression of NOTCH3 [17]. NOTCH3 gene is known to be involved in 

T cell differentiation and leukemogenesis. 

Overall, these data indicate that miR181/miR17-92/miR150 are among the main regulators of 

early T and B lymphopoiesis from the common lymphoid precursor.  

An analogue role is played by miR 223 in myeloid lineage. Chen et al [9] observed that 

miR223 is highly expressed in mouse bone marrow. Indeed, miR223 tunes granulocytic 

differentation both at an early and late phase [18]. MiR223 knock out mice show expansion 
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of granulocyte precursors and hyper mature circulating granulocytes. miR223 targets ELF-1-

like factor (mef) 2c, a transcription factor that promotes myeloid differentiation and IGFR1, 

thus affecting expansion of myeloid precursors committed to granulocytic differentiation 

[18].  

Granulocytic differentiation is further regulated through a critical transcription factor, GFI1 

(growth factor independent-1). GFI1 expression depends upon miR21 as demonstrated in a 

knockout model [19]. 

3. MiRNAs at the cross-roads between innate and adaptive immune 

responses 

3.1. Innate immune responses 

Innate responses imply the final differentiation and interaction of intervening cells to  

the site where inflammatory stimuli were generated. Several miRNAs have been 

described as implicated in a complex network, that controls the on and off phases of the 

response.  

miR146a is upregulated upon LPS stimulation in monocytes and is likely to be responsible 

of the phenomenon known as hyporesponsiveness to prolonged LPS exposure. Indeed, 

miR146a acts as a negative regulator of LPS induced responses. LPS-induced NF Kb 

promotes miR146a upregulation, which in turns suppresses TRAF6 (TNF receptor 

associated factor 6), IRAK1/2 (Interleukin 1 receptor associated kinase 1). These genes 

encode key adaptor molecules along TLR related pathways and are involved in innate 

responses through TNF activation and production of IL-1 dependent molecules such as 

IL-8 and RANTES [20-22]. Therefore, monocytes become hyporesponsive to further 

stimulation with LPS and relevant pro inflammatory molecules are reduced in the 

microenvironment. 

miR155 seems to act on the same pathways but with opposite effects to miR146a. Indeed, 

engagement of several TLRs (3,4 and 9) promotes miR155 transcription through AP1 and 

NFkb. miR155 main targets are SOCS1 (suppressor of cytokine signaling 1) and SHIP1(Src 

Homology-2 domain-containing inositol-5’-phosphatase 1) that lead to release of 

proinflammatory cytokines in the microenvironment such as TNF alpha and IFN gamma 

[23-26].  

miR223 can regulate also monocyte-macrophage differentiation by targeting IKK-alpha (IKb 

kinase) and leaving NFKb to promote inflammatory genes transcription. The final result is 

the transition of monocyte to macrophage [27]. 

The emerging data suggest that miRNA regulation of inflammatory and innate responses is 

timely tuned according to microenviromental stimuli. Indeed, TLR stimulation evokes 

miR155 upregulation within 2hr , while other miRNAs, such as miR21 are produced 

according to a delayed time frame. These observations are likely related to a differential role 
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of miRNAs in turning on and off the inflammatory/innate responses. In this setting, miR21 

should turn off the response, by increasing IL-10 levels [28]. 

3.2. Adaptive responses 

Immune responses require an integration between the innate/inflammatory and adaptive 

arm. According to their specific functions, miRNAs represent a perfect set of molecules 

to finely regulate and coordinate also adaptive responses. miRNAs that are involved in 

developmental stages of hematopoiesis can show additional functions in differentiated 

immune cells. Indeed, miR181a, which is implicated in thymic selection, is able to 

strengthen TCR signaling and reinforce T cell activation upon antigen engagement [11]. 

This effect likely relies on phosphatase suppression and increase in ERK 

phosphorylation. A member of the same family, miR181b has been proposed as 

regulating CSR (class switch recombination) of B cells. CSR is induced by activation 

induced cytidine deaminase (AID) and is likely targeted by miR181b. Indeed, IgG switch 

promoted by LPS and IL-4 stimulation is impaired when levels of endogenous miR181b 

are increased [10].  

The role of miRNAs in T cell responses can be also variable according to its endogenous 

levels and/or contemporary expression in antigen presenting cells (APCs). This might be the 

case of miR155. miR155 is encoded within the BIC region (B cell integration cluster), which 

is often involved in lymphomas. BIC deficient mice, which lacked miR155 production, did 

not show significant impairment in hematopoiesis. When immunization with different 

bacterial strains and subsequent challenge with the same pathogens were administered to 

BIC deficient mice, the animals died of infection. Indeed, immunizations did not translate 

into protective immunity as compared with wild type mice. The authors have shown that T 

cell activity was compromised because there was a shift towards Th2 phenotype due to 

downregulation of c-Maf, which is a transcription factor that drives Th2 cytokine secretion 

[29]. Furthermore, BIC deficient DCs failed to adequately activate T cell responses. In this 

model, B cells were not able to differentiate to plasmablasts and showed alterations in CSR 

(class switch recombination). This phenomenon may be due to miR155, that targets AID 

[30]. 

Overall, these data indicate that miR155 has a pivotal role in sustaining adaptive immune 

responses.  

However, these data are partly in contrast with the study from Mao et al. [31], who showed 

that miR155 is upregulated upon TLR stimulation in murine bone marrow derived dendritic 

cells. Furthermore, transfection of murine epidermal DCs with miR155 coding plasmid 

increased its endogenous levels and attenuated T cells responses driven by DCs. These 

effects were reverted when a miR155 antisense sequence was co-transfected into epidermal 

DCs. The authors try to reconcile these conflicting data, explaining that endogenous levels 

may induce different effects of the same miRNA in different cell types. However, since 
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epidermal DC population is heterogeneous and not pure, it is possible that high levels of 

miR155 promote attenuation of T cell responses through APCs different from differentiated 

DCs.  

The plasticity of miRNAs in controlling overall immune responses is further demonstrated 

by the miR29 activity. Interestingly, recent findings of Ma et al. [32], who have shown that 

miR29 suppresses IFN-γ secretion in NK and T cells, thereby linking together innate and 

adaptive responses. Indeed, responses to pathogen are mainly regulated through this 

mechanism as for the case of L. Monocytogenes and M. Tuberculosis.  

4. MiRNAs and autoimmune diseases 

The emerging picture of a central role played by miRNAs in the onset, development and 

turning off of immune responses is strictly related to the findings of their involvement in 

autoimmune diseases. In some cases, the functions of specific miRNAs have been first 

elucidated in the disease and then in immune system physiology. The possibility to use 

murine models of autoimmunity allows investigators to study the selected miRNAs in vivo 

in order to understand how they facilitate or attenuate the disease. However, the 

identification of a specific miRNA in the mouse model does not mean a direct translation 

into human disease. Overall, disregulation of miRNAs observed in autoimmunity promote 

either activation of immune effectors and/or suppression of immune regulatory cells, thus 

contributing to disease development. In the following section, the contribution of miRNAs 

will be discussed according to the specific autoimmune disorder. 

5. Systemic Lupus Erythematosus (SLE) 

SLE is a chronic autoimmune disease with a complex pathogenesis, involving different 

organs [33]. Since systemic inflammation is the hallmark of the disease, deregulation of 

critical pro inflammatory pathways have been described [34]. Indeed, miRNAs deregulated 

in SLE target genes involved in the inflammatory responses 

5.1. miR146a 

Type I IFN pathway is widely recognized as a primary deregulation of inflammatory 

responses in SLE pathogenesis [34]. IFN I pathway is elicited by TLR engagement. 

Among TLRs, TLR-7 contributes the most to this phenomenon. In 2009, Tang et al. [35] 

have shown that underexpression of miR146a is tightly related to the upregulation of 

type I IFN pathway. They analyzed 52 patients with SLE, 6 with Behcet’disease and 29 

normal subjects and evaluated miR146a levels from PBMCs. Interestingly, miR146a was 

proportionally decreased according to disease state (no disease, inactive SLE and active 

SLE, with active SLE having the lowest levels). miR146a levels were inversely related to 

IFN score, which was calculated considering the expression of three representative 
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inducible genes. Finally, IFN pathway could be downregulated when overexpression of 

miR146a was attained in PBMCs taken from normal donors and SLE patients. The same 

group [36] has identified a genetic variant of the miR146a promoter region, that confers 

reduced binding affinity to the transcription factor ETS1, thus leading to reduced levels 

of miR146a and increased susceptibility to SLE. These data have been further confirmed 

by a genomic analysis, where a SLE associated polymorphic SNP variant, rs2431697, was 

found to be related to low expression levels of miR146a gene [37]. Overall, these findings 

suggest a pivotal role of miR146a in SLE susceptibility and development. 

5.2. miR125a, 126, 21 and 148a 

Autoimmune disorders are often characterized by disregulated expression of pro-

inflammatory chemokines and its receptor that drive and sustain unchecked immune 

responses, favoring autoimmunity. This is the case for RANTES (Regulated upon 

Activation, Normal T-cell Expressed, and Secreted), also known as CCL5, whose elevated 

levels are observed in the context of chronic systemic inflammations such as arthritis and 

nephritis. Renal damage is initiated by RANTES over-expression in mouse models of SLE 

[38].  

Zhao et al. [39] have shown that miR125a levels are underexpressed in T cells of SLE 

patients, while its predicted target KLF13 (Kruppel like factor 13) was upregulated. KLF13 

directly controls the expression of RANTES in T cells. Interestingly, prolonged mitogenic 

stimuli evoke miR125a upregulation in normal T cells, providing a negative feedback loop 

that controls chemokine expression and helps to turn off inflammatory responses. The 

deficiency of this mechanism in SLE patients provide further insights on the onset and 

progression of the disease.  

DNA methylation is a relevant mechanism to regulate gene transcription in eukaryotic 

cells [40] and any perturbation of these pathways can have crucial impact in health and 

disease. T cells from SLE patients suffer of a global hypomethylation [41], which is related 

to disease activity. The reduction of DNA methylation depends upon the reduced levels 

of Dnmt1 (Dna methyl transferase-1), the key enzyme that transfers methyl groups to 

CpG islands. The paired analysis of CD4 T cells from normal donors and SLE patients 

revealed the presence of an upregulated miRNA in SLE-T cells, miR126, that was 

independent from costimulatory signals [42]. miR126 targets Dnmt1 and reduces its levels 

in SLE- CD4 T cells. miR126 downstream effects include hypomethylation of critical genes 

in autoimmune pathogenesis such as TNSFS7 and ITGAL, that encode CD70 and CD11a 

[43], respectively. Indeed, CD70 [44] is the cellular ligand for the tumor necrosis factor 

receptor family member CD27,and is required on activated T cells and B cells to stimulate 

the synthesis of IgG. CD11a, also known as lymphocyte function–associated antigen 1, 

belongs to the integrin family of cell surface receptors and can strengthen the adhesion of 

T lymphocytes to other immune cells. These events could be reverted by miR126 



 
Emerging Role of MicroRNAs in the Pathophysiology of Immune System 

 

213 

inhibition. A similar activity of Dnmt1 suppression in CD4 T cells from SLE has been 

ascribed to miR21 and 148a [45]  

6. Rheumathoid Arthritis (RA) 

RA is a systemic inflammatory disorder, primary involving synovial joints. The 

inflammatory milieu is the base for disease onset and progression. Several groups reported 

an increase of miR155 and 146a in synovial fibroblasts and PBMCs from RA patients [46, 47]. 

Interestingly, these miRNAs can be stimulated by inflammatory stimuli, though promoting 

opposite effects. miR155 sustains inflammation, while miR146a attenuates through TNFα 

suppression. In this setting, miR146a seems not able to promote its action. A possible 

explanation is that both miRNAs are elicited by the pro-inflammatory environment of RA, 

with miR155 enforcing inflammation, while miR146a should shut off it, but it is unable to 

exert its activity.  

7. Multiple Sclerosis (MS) 

MS is an autoimmune disease of the central nervous system characterized by chronic 

inflammation, demyelination, and axonal damage. Demyelination is due to pro 

inflammatory T cells. Mireia Guerau-de-Arellano et al. [48] identified increased levels of 

miR128 and 27b in naive and miR340 in memory CD4 T cells from MS patients, favoring 

switch to Th1 phenotype. Gain-of-function experiments with these micro-RNAs enhanced 

the encephalitogenic potential of myelin-specific T cells in experimental autoimmune 

encephalomyelitis, while treatment with specific oligonucleotide miRNA inhibitors 

reverted to normal Th2 shift. These data further clarified the role of these miRNAs in MS 

pathogenesis and suggested a therapeutic strategy based on miR suppression by selected 

inhibitors.  

8. Conclusions 

The increasing evidences on the role of miRNAs in pathophysiology are radically 

changing the established paradigms of disease onset and development. However, we can 

assert that our undestanding of miRNA functions is still preliminary and further work is 

awaited to better define how these molecules integrate with known intracellular 

pathways. Indeed, we know that miRNAs exert a very finely tuned regulation of 

intracellular pathways. This effect is attained through a modulation of miR levels, that is 

very complex to study in simplified models both in vitro and in vivo. Indeed, the best 

method to study miRNAs is to over express or completely inhibit its expression, but it is 

unlikely that this method can perfectly mirror the real intracellular conditions. Immune 

responses represent an attracting system to explore miR functions, since they have to be 

tightly regulated. The data have shown that miRNA modulation is an efficient way to 

rapidly turn on and off immune responses, both preceding and integrating with the 

classical gene mastered pathways. Therefore, we believe that the study of miRNAs within 



 
Immunodeficiency 

 

214 

immune system may represent an excellent model to understand miRNA 

pathophysiology, providing critical insights to be extended to the other branches of 

biopathology.  
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