82 research outputs found

    Fine-Tuning Constraints on Supergravity Models

    Full text link
    We discuss fine-tuning constraints on supergravity models. The tightest constraints come from the experimental mass limits on two key particles: the lightest CP even Higgs boson and the gluino. We also include the lightest chargino which is relevant when universal gaugino masses are assumed. For each of these particles we show how fine-tuning increases with the experimental mass limit, for four types of supergravity model: minimal supergravity, no-scale supergravity (relaxing the universal gaugino mass assumption), D-brane models and anomaly mediated supersymmetry breaking models. Among these models, the D-brane model is less fine tuned.The experimental propects for an early discovery of Higgs and supersymmetry at LEP and the Tevatron are discussed in this framework.Comment: 17 pages, Latex, including 5 eps figure

    Evaluation of Absolute Cross Sections for the p(n,d)γ Reaction at T_n = 138 Mev

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478

    On Yukawa quasi-unification with mu<0

    Full text link
    Although recent data on the muon anomalous magnetic moment strongly disfavor the constrained minimal supersymmetric standard model with mu<0, they cannot exclude it because of theoretical ambiguities. We consider this model supplemented by a Yukawa quasi-unification condition which allows an acceptable b-quark mass. We find that the cosmological upper bound on the lightest sparticle relic abundance is incompatible with the data on the branching ratio of b-->s gamma, which is evaluated by including all the next-to-leading order corrections. Thus, this scheme is not viable.Comment: 4 pages including 3 figures, Revte

    Particle Physics Approach to Dark Matter

    Full text link
    We review the main proposals of particle physics for the composition of the cold dark matter in the universe. Strong axion contribution to cold dark matter is not favored if the Peccei-Quinn field emerges with non-zero value at the end of inflation and the inflationary scale is superheavy since, under these circumstances, it leads to unacceptably large isocurvature perturbations. The lightest neutralino is the most popular candidate constituent of cold dark matter. Its relic abundance in the constrained minimal supersymmetric standard model can be reduced to acceptable values by pole annihilation of neutralinos or neutralino-stau coannihilation. Axinos can also contribute to cold dark matter provided that the reheat temperature is adequately low. Gravitinos can constitute the cold dark matter only in limited regions of the parameter space. We present a supersymmetric grand unified model leading to violation of Yukawa unification and, thus, allowing an acceptable b-quark mass within the constrained minimal supersymmetric standard model with mu>0. The model possesses a wide range of parameters consistent with the data on the cold dark matter abundance as well as other phenomenological constraints. Also, it leads to a new version of shifted hybrid inflation.Comment: 32 pages including 6 figures, uses svmult.cls, some clarifications added, lectures given at the Third Aegean Summer School "The Invisible Universe: Dark Matter and Dark Energy", 26 September-1 October 2005, Karfas, Island of Chios, Greece (to appear in the proceedings

    Flavour Violation in SUSY SU(5) GUT at Large tan beta

    Get PDF
    We study flavour violation in the minimal SUSY SU(5) GUT assuming all the third generation Yukawa couplings to be due to the renormalizable physics above GUT scale. At large tanβ,\tan\beta, as suggested by Yukawa unification in SU(5), sizable flavour violation in the left (right) slepton (down squark) sector is induced due to renormalization effects of down type Yukawa couplings between GUT and Planck scales in addition to the flavour violation in the right slepton sector. The new flavour physics contribution to KKˉ,K-\bar K, BBˉB-\bar B mixing is small but might be of phenomenological interest in the case of bsγ.b\to s\gamma. The sign of the latter contribution is the same as the sign of the dominant chargino contribution, thus making the constraints on SUSY scale coming from bsγb\to s\gamma somewhat more restrictive. The most important feature of the considered scenario is the large rate of lepton flavour violation. Given the present experimental constraints, the μeγ\mu\to e\gamma and μe\mu-e conversion branching ratios are above the sensitivity of the planned experiments unless the SUSY scale is pushed above one TeV.Comment: 22 pages, 7 figure

    Higgs Scalars in the Minimal Non-minimal Supersymmetric Standard Model

    Get PDF
    We consider the simplest and most economic version among the proposed non-minimal supersymmetric models, in which the μ\mu-parameter is promoted to a singlet superfield, whose all self-couplings are absent from the renormalizable superpotential. Such a particularly simple form of the renormalizable superpotential may be enforced by discrete RR-symmetries which are extended to the gravity-induced non-renormalizable operators as well. We show explicitly that within the supergravity-mediated supersymmetry-breaking scenario, the potentially dangerous divergent tadpoles associated with the presence of the gauge singlet first appear at loop levels higher than 5 and therefore do not destabilize the gauge hierarchy. The model provides a natural explanation for the origin of the μ\mu-term, without suffering from the visible axion or the cosmological domain-wall problem. Focusing on the Higgs sector of this minimal non-minimal supersymmetric standard model, we calculate its effective Higgs potential by integrating out the dominant quantum effects due to stop squarks. We then discuss the phenomenological implications of the Higgs scalars predicted by the theory for the present and future high-energy colliders. In particular, we find that our new minimal non-minimal supersymmetric model can naturally accommodate a relatively light charged Higgs boson, with a mass close to the present experimental lower bound.Comment: 63 pages (12 figures), extended versio

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950–2019: a comprehensive demographic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods: 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings: The global TFR decreased from 2•72 (95% uncertainty interval [UI] 2•66–2•79) in 2000 to 2•31 (2•17–2•46) in 2019. Global annual livebirths increased from 134•5 million (131•5–137•8) in 2000 to a peak of 139•6 million (133•0–146•9) in 2016. Global livebirths then declined to 135•3 million (127•2–144•1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2•1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27•1% (95% UI 26•4–27•8) of global livebirths. Global life expectancy at birth increased from 67•2 years (95% UI 66•8–67•6) in 2000 to 73•5 years (72•8–74•3) in 2019. The total number of deaths increased from 50•7 million (49•5–51•9) in 2000 to 56•5 million (53•7–59•2) in 2019. Under-5 deaths declined from 9•6 million (9•1–10•3) in 2000 to 5•0 million (4•3–6•0) in 2019. Global population increased by 25•7%, from 6•2 billion (6•0–6•3) in 2000 to 7•7 billion (7•5–8•0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58•6 years (56•1–60•8) in 2000 to 63•5 years (60•8–66•1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019. Interpretation: Over the past 20 years, fertility rates have been dropping steadily and life expectancy has been increasing, with few exceptions. Much of this change follows historical patterns linking social and economic determinants, such as those captured by the GBD Socio-demographic Index, with demographic outcomes. More recently, several countries have experienced a combination of low fertility and stagnating improvement in mortality rates, pushing more populations into the late stages of the demographic transition. Tracking demographic change and the emergence of new patterns will be essential for global health monitoring. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens
    corecore