680 research outputs found
Low dose radiation and cancer in A-bomb survivors: latency and non-linear dose-response in the 1950–90 mortality cohort
BACKGROUND: Analyses of Japanese A-bomb survivors' cancer mortality risks are used to establish recommended annual dose limits, currently set at 1 mSv (public) and 20 mSv (occupational). Do radiation doses below 20 mSv have significant impact on cancer mortality in Japanese A-bomb survivors, and is the dose-response linear? METHODS: I analyse stomach, liver, lung, colon, uterus, and all-solid cancer mortality in the 0 – 20 mSv colon dose subcohort of the 1950–90 (grouped) mortality cohort, by Poisson regression using a time-lagged colon dose to detect latency, while controlling for gender, attained age, and age-at-exposure. I compare linear and non-linear models, including one adapted from the cellular bystander effect for α particles. RESULTS: With a lagged linear model, Excess Relative Risk (ERR) for the liver and all-solid cancers is significantly positive and several orders of magnitude above extrapolations from the Life Span Study Report 12 analysis of the full cohort. Non-linear models are strongly superior to the linear model for the stomach (latency 11.89 years), liver (36.90), lung (13.60) and all-solid (43.86) in fitting the 0 – 20 mSv data and show significant positive ERR at 0.25 mSv and 10 mSv lagged dose. The slope of the dose-response near zero is several orders of magnitude above the slope at high doses. CONCLUSION: The standard linear model applied to the full 1950–90 cohort greatly underestimates the risks at low doses, which are significant when the 0 – 20 mSv subcohort is modelled with latency. Non-linear models give a much better fit and are compatible with a bystander effect
The costs of respiratory illnesses arising from Florida gulf coast Karenia brevis blooms
This is the final version of the article. Available from NIEHS via the DOI in this recordBACKGROUND: Algal blooms of Karenia brevis, a harmful marine algae, occur almost annually off the west coast of Florida. At high concentrations, K. brevis blooms can cause harm through the release of potent toxins, known as brevetoxins, to the atmosphere. Epidemiologic studies suggest that aerosolized brevetoxins are linked to respiratory illnesses in humans. OBJECTIVES: We hypothesized a relationship between K. brevis blooms and respiratory illness visits to hospital emergency departments (EDs) while controlling for environmental factors, disease, and tourism. We sought to use this relationship to estimate the costs of illness associated with aerosolized brevetoxins. METHODS: We developed a statistical exposure-response model to express hypotheses about the relationship between respiratory illnesses and bloom events. We estimated the model with data on ED visits, K. brevis cell densities, and measures of pollen, pollutants, respiratory disease, and intra-annual population changes. RESULTS: We found that lagged K. brevis cell counts, low air temperatures, influenza outbreaks, high pollen counts, and tourist visits helped explain the number of respiratory-specific ED diagnoses. The capitalized estimated marginal costs of illness for ED respiratory illnesses associated with K. brevis blooms in Sarasota County, Florida, alone ranged from 4 million, depending on bloom severity. CONCLUSIONS: Blooms of K. brevis lead to significant economic impacts. The costs of illness of ED visits are a conservative estimate of the total economic impacts. It will become increasingly necessary to understand the scale of the economic losses associated with K. brevis blooms to make rational choices about appropriate mitigation.This research was sponsored by the Florida Fish
& Wildlife Conservation Commission (07182) and
the Departments of Environmental Protection and
Health; the U.S. Centers for Disease Control and
Prevention; the Center for Oceans and Human
Health at the Woods Hole Oceanographic Institution
[National Science Foundation (NSF) OCE-0430724;
National Institute of Environmental Health Sciences
(NIEHS) P50 ES012742]; the Ocean and Human
Health Center at the University of Miami Rosenstiel
School (NSF 0CE0432368; NIEHS 1 P50 ES12736);
and the NIEHS (PO1 ES 10594)
Framework, principles and recommendations for utilising participatory methodologies in the co-creation and evaluation of public health interventions
Background:
Due to the chronic disease burden on society, there is a need for preventive public health interventions to stimulate society towards a healthier lifestyle. To deal with the complex variability between individual lifestyles and settings, collaborating with end-users to develop interventions tailored to their unique circumstances has been suggested as a potential way to improve effectiveness and adherence. Co-creation of public health interventions using participatory methodologies has shown promise but lacks a framework to make this process systematic. The aim of this paper was to identify and set key principles and recommendations for systematically applying participatory methodologies to co-create and evaluate public health interventions.
Methods:
These principles and recommendations were derived using an iterative reflection process, combining key learning from published literature in addition to critical reflection on three case studies conducted by research groups in three European institutions, all of whom have expertise in co-creating public health interventions using different participatory methodologies.
Results:
Key principles and recommendations for using participatory methodologies in public health intervention co-creation are presented for the stages of: Planning (framing the aim of the study and identifying the appropriate sampling strategy); Conducting (defining the procedure, in addition to manifesting ownership); Evaluating (the process and the effectiveness) and Reporting (providing guidelines to report the findings). Three scaling models are proposed to demonstrate how to scale locally developed interventions to a population level.
Conclusions:
These recommendations aim to facilitate public health intervention co-creation and evaluation utilising participatory methodologies by ensuring the process is systematic and reproducible
Acute physiological stress down-regulates mRNA expressions of growth-related genes in coho salmon
Growth and development in fish are regulated to a major extent by growth-related factors, such as liver-derived insulin-like growth factor (IGF) -1 in response to pituitary-secreted growth hormone (GH) binding to the GH receptor (GHR). Here, we report on the changes in the expressions of gh, ghr, and igf1 genes and the circulating levels of GH and IGF-1 proteins in juvenile coho salmon (Oncorhynchus kisutch) in response to handling as an acute physiological stressor. Plasma GH levels were not significantly different between stressed fish and prestressed control. Plasma IGF-1 concentrations in stressed fish 1.5 h post-stress were the same as in control fish, but levels in stressed fish decreased significantly 16 h post-stress. Real-time quantitative PCR (qPCR) analysis showed that ghr mRNA levels in pituitary, liver, and muscle decreased gradually in response to the stressor. After exposure to stress, hepatic igf1 expression transiently increased, whereas levels decreased 16 h post-stress. On the other hand, the pituitary gh mRNA level did not change in response to the stressor. These observations indicate that expression of gh, ghr, and igf1 responded differently to stress. Our results show that acute physiological stress can mainly down-regulate the expressions of growth-related genes in coho salmon in vivo. This study also suggests that a relationship between the neuroendocrine stress response and growth-related factors exists in fish.Peer reviewed: YesNRC publication: Ye
Factors driving patterns and trends in strandings of small cetaceans
The incidence of cetacean strandings is expected to depend on a combination of factors, including the dis- tribution and abundance of the cetaceans, their prey, and causes of mortality (e.g. natural, fishery bycatch), as well as currents and winds which affect whether carcasses reach the shore. We investigated spatiotemporal patterns and trends in the numbers of strandings of three species of small cetacean in Galicia (NW Spain) and their relationships with meteoro- logical, oceanographic, prey abundance and fishing-related variables, aiming to disentangle the relationship that may exist between these factors, cetacean abundance and mor- tality off the coast. Strandings of 1166 common dolphins (Delphinus delphis), 118 bottlenose dolphins (Tursiops truncatus) and 90 harbour porpoises (Phocoena phocoena) during 2000–2013 were analysed. Generalised additive and generalised additive-mixed model results showed that the variables which best explained the pattern of strandings of the three cetacean species were those related with local ocean meteorology (strength and direction of the North– South component of the winds and the number of days with South-West winds) and the winter North Atlantic Oscil- lation Index. There were no significant relationships with indices of fishing effort or landings. Only bottlenose dolphin showed possible fluctuations in local abundance over the study period. There was no evidence of long-term trends in number of strandings in any of the species and their abun- dances were, therefore, considered to have been relatively stable during the study period.Versión del editor2,01
Spatio-temporal Models of Lymphangiogenesis in Wound Healing
Several studies suggest that one possible cause of impaired wound healing is
failed or insufficient lymphangiogenesis, that is the formation of new
lymphatic capillaries. Although many mathematical models have been developed to
describe the formation of blood capillaries (angiogenesis), very few have been
proposed for the regeneration of the lymphatic network. Lymphangiogenesis is a
markedly different process from angiogenesis, occurring at different times and
in response to different chemical stimuli. Two main hypotheses have been
proposed: 1) lymphatic capillaries sprout from existing interrupted ones at the
edge of the wound in analogy to the blood angiogenesis case; 2) lymphatic
endothelial cells first pool in the wound region following the lymph flow and
then, once sufficiently populated, start to form a network. Here we present two
PDE models describing lymphangiogenesis according to these two different
hypotheses. Further, we include the effect of advection due to interstitial
flow and lymph flow coming from open capillaries. The variables represent
different cell densities and growth factor concentrations, and where possible
the parameters are estimated from biological data. The models are then solved
numerically and the results are compared with the available biological
literature.Comment: 29 pages, 9 Figures, 6 Tables (39 figure files in total
Prospective Case-Control Study of Cardiovascular Abnormalities 6 Months Following Mild COVID-19 in Healthcare Workers
OBJECTIVES: The purpose of this study was to detect cardiovascular changes after mild severe acute respiratory syndrome coronavirus 2 infection. BACKGROUND: Concern exists that mild coronavirus disease 2019 may cause myocardial and vascular disease. METHODS: Participants were recruited from COVIDsortium, a 3-hospital prospective study of 731 health care workers who underwent first-wave weekly symptom, polymerase chain reaction, and serology assessment over 4 months, with seroconversion in 21.5% (n = 157). At 6 months post-infection, 74 seropositive and 75 age-, sex-, and ethnicity-matched seronegative control subjects were recruited for cardiovascular phenotyping (comprehensive phantom-calibrated cardiovascular magnetic resonance and blood biomarkers). Analysis was blinded, using objective artificial intelligence analytics where available. RESULTS: A total of 149 subjects (mean age 37 years, range 18 to 63 years, 58% women) were recruited. Seropositive infections had been mild with case definition, noncase definition, and asymptomatic disease in 45 (61%), 18 (24%), and 11 (15%), respectively, with 1 person hospitalized (for 2 days). Between seropositive and seronegative groups, there were no differences in cardiac structure (left ventricular volumes, mass, atrial area), function (ejection fraction, global longitudinal shortening, aortic distensibility), tissue characterization (T1, T2, extracellular volume fraction mapping, late gadolinium enhancement) or biomarkers (troponin, N-terminal pro-B-type natriuretic peptide). With abnormal defined by the 75 seronegatives (2 SDs from mean, e.g., ejection fraction 1,072 ms, septal T2 >52.4 ms), individuals had abnormalities including reduced ejection fraction (n = 2, minimum 50%), T1 elevation (n = 6), T2 elevation (n = 9), late gadolinium enhancement (n = 13, median 1%, max 5% of myocardium), biomarker elevation (borderline troponin elevation in 4; all N-terminal pro-B-type natriuretic peptide normal). These were distributed equally between seropositive and seronegative individuals. CONCLUSIONS: Cardiovascular abnormalities are no more common in seropositive versus seronegative otherwise healthy, workforce representative individuals 6 months post-mild severe acute respiratory syndrome coronavirus 2 infection
Perceptual Other-Race Training Reduces Implicit Racial Bias
Background: Implicit racial bias denotes socio-cognitive attitudes towards other-race groups that are exempt from conscious awareness. In parallel, other-race faces are more difficult to differentiate relative to own-race faces – the ‘‘Other-Race Effect.’ ’ To examine the relationship between these two biases, we trained Caucasian subjects to better individuate other-race faces and measured implicit racial bias for those faces both before and after training. Methodology/Principal Findings: Two groups of Caucasian subjects were exposed equally to the same African American faces in a training protocol run over 5 sessions. In the individuation condition, subjects learned to discriminate between African American faces. In the categorization condition, subjects learned to categorize faces as African American or not. For both conditions, both pre- and post-training we measured the Other-Race Effect using old-new recognition and implicit racial biases using a novel implicit social measure – the ‘‘Affective Lexical Priming Score’ ’ (ALPS). Subjects in the individuation condition, but not in the categorization condition, showed improved discrimination of African American faces with training. Concomitantly, subjects in the individuation condition, but not the categorization condition, showed a reduction in their ALPS. Critically, for the individuation condition only, the degree to which an individual subject’s ALPS decreased was significantly correlated with the degree of improvement that subject showed in their ability to differentiate African American faces
A Fiber-Optic Fluorescence Microscope Using a Consumer-Grade Digital Camera for In Vivo Cellular Imaging
BACKGROUND: Early detection is an essential component of cancer management. Unfortunately, visual examination can often be unreliable, and many settings lack the financial capital and infrastructure to operate PET, CT, and MRI systems. Moreover, the infrastructure and expense associated with surgical biopsy and microscopy are a challenge to establishing cancer screening/early detection programs in low-resource settings. Improvements in performance and declining costs have led to the availability of optoelectronic components, which can be used to develop low-cost diagnostic imaging devices for use at the point-of-care. Here, we demonstrate a fiber-optic fluorescence microscope using a consumer-grade camera for in vivo cellular imaging. METHODS: The fiber-optic fluorescence microscope includes an LED light, an objective lens, a fiber-optic bundle, and a consumer-grade digital camera. The system was used to image an oral cancer cell line labeled with 0.01% proflavine. A human tissue specimen was imaged following surgical resection, enabling dysplastic and cancerous regions to be evaluated. The oral mucosa of a healthy human subject was imaged in vivo, following topical application of 0.01% proflavine. FINDINGS: The fiber-optic microscope resolved individual nuclei in all specimens and tissues imaged. This capability allowed qualitative and quantitative differences between normal and precancerous or cancerous tissues to be identified. The optical efficiency of the system permitted imaging of the human oral mucosa in real time. CONCLUSION: Our results indicate this device as a useful tool to assist in the identification of early neoplastic changes in epithelial tissues. This portable, inexpensive unit may be particularly appropriate for use at the point-of-care in low-resource settings
- …