132 research outputs found

    PLOT3D user's manual

    Get PDF
    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files

    Broadband Terahertz Pulse Emission from ZnGeP\u3csub\u3e2\u3c/sub\u3e

    Get PDF
    Optical rectification is demonstrated in (110)-cut ZnGeP2 (ZGP) providing broadband terahertz (THz) generation. The source is compared to both GaP and GaAs over a wavelength range of 1150 nm to 1600 nm and peak intensity range of 0.5 GW/cm2 to 40 GW/cm2. ZGP peak-to-peak field amplitude is larger than in the other materials due to either lower nonlinear absorption or larger second order nonlinearity. This material is well suited for broadband THz generation across a wide range of infrared excitation wavelengths

    Mapping Regional Forest Evapotranspiration and Photosynthesis by Coupling Satellite Data with Ecosystem Simulation

    Get PDF
    Mapping Regional Forest Evapotranspiration and Photosynthesis by Coupling Satellite Data With Ecosystem Simulatio

    St. Louis Area Earthquake Hazards Mapping Project: Seismic and Liquefaction Hazard Maps

    Get PDF
    We present probabilistic and deterministic seismic and liquefaction hazard maps for the densely populated St. Louis metropolitan area that account for the expected effects of surficial geology on earthquake ground shaking. Hazard calculations were based on a map grid of 0.005°, or about every 500 m, and are thus higher in resolution than any earlier studies. To estimate ground motions at the surface of the model (e.g., site amplification), we used a new detailed near-surface shear-wave velocity model in a 1D equivalent- linear response analysis. When compared with the 2014 U.S. Geological Survey (USGS) National Seismic Hazard Model, which uses a uniform firm-rock-site condition, the new probabilistic seismic-hazard estimates document much more variability. Hazard levels for upland sites (consisting of bedrock and weathered bedrock overlain by loess-covered till and drift deposits), show up to twice the ground-motion values for peak ground acceleration (PGA), and similar ground-motion values for 1.0 s spectral acceleration (SA). Probabilistic ground-motion levels for lowland alluvial floodplain sites (generally the 20-40-m-thick modern Mississippi and Missouri River floodplain deposits overlying bedrock) exhibit up to twice the ground-motion levels for PGA, and up to three times the ground-motion levels for 1.0 s SA. Liquefaction probability curves were developed from available standard penetration test data assuming typical lowland and upland water table levels. A simplified liquefaction hazard map was created from the 5%-in-50-year probabilistic ground-shaking model. The liquefaction hazard ranges from low (\u3c40% of area expected to liquefy) in the uplands to severe (\u3e60% of area expected to liquefy) in the lowlands. Because many transportation routes, power and gas transmission lines, and population centers exist in or on the highly susceptible lowland alluvium, these areas in the St. Louis region are at significant potential risk from seismically induced liquefaction and associated ground deformation

    A prognostic model integrating PET-derived metrics and image texture analyses with clinical risk factors from GOYA

    Get PDF
    Image texture analysis (radiomics) uses radiographic images to quantify characteristics that may identify tumour heterogeneity and associated patient outcomes. Using fluoro‐deoxy‐glucose positron emission tomography/computed tomography (FDG‐PET/CT)‐derived data, including quantitative metrics, image texture analysis and other clinical risk factors, we aimed to develop a prognostic model that predicts survival in patients with previously untreated diffuse large B‐cell lymphoma (DLBCL) from GOYA (NCT01287741). Image texture features and clinical risk factors were combined into a random forest model and compared with the international prognostic index (IPI) for DLBCL based on progression‐free survival (PFS) and overall survival (OS) predictions. Baseline FDG‐PET scans were available for 1263 patients, 832 patients of these were cell‐of‐origin (COO)‐evaluable. Patients were stratified by IPI or radiomics features plus clinical risk factors into low‐, intermediate‐ and high‐risk groups. The random forest model with COO subgroups identified a clearer high‐risk population (45% 2‐year PFS [95% confidence interval (CI) 40%–52%]; 65% 2‐year OS [95% CI 59%–71%]) than the IPI (58% 2‐year PFS [95% CI 50%–67%]; 69% 2‐year OS [95% CI 62%–77%]). This study confirms that standard clinical risk factors can be combined with PET‐derived image texture features to provide an improved prognostic model predicting survival in untreated DLBCL

    Population Dynamics and Angler Exploitation of the Unique Muskellunge Population in Shoepack Lake, Voyageurs National Park, Minnesota

    Get PDF
    A unique population of muskellunge Esox masquinongy inhabits Shoepack Lake in Voyageurs National Park, Minnesota. Little is known about its status, dynamics, and angler exploitation, and there is concern for the long-term viability of this population. We used intensive sampling and mark–recapture methods to quantify abundance, survival, growth, condition, age at maturity and fecundity and angler surveys to quantify angler pressure, catch rates, and exploitation. During our study, heavy rain washed out a dam constructed by beavers Castor canadensis which regulates the water level at the lake outlet, resulting in a nearly 50% reduction in surface area. We estimated a population size of 1,120 adult fish at the beginning of the study. No immediate reduction in population size was detected in response to the loss of lake area, although there was a gradual, but significant, decline in population size over the 2-year study. Adults grew less than 50 mm per year, and relative weight (W r) averaged roughly 80. Anglers were successful in catching, on average, two fish during a full day of angling, but harvest was negligible. Shoepack Lake muskellunge exhibit much slower growth rates and lower condition, but much higher densities and angler catch per unit effort (CPUE), than other muskellunge populations. The unique nature, limited distribution, and location of this population in a national park require special consideration for management. The results of this study provide the basis for assessing the long-term viability of the Shoepack Lake muskellunge population through simulations of long-term population dynamics and genetically effective population size

    Simulated Effects of Recruitment Variability, Exploitation, and Reduced Habitat Area on the Muskellunge Population in Shoepack Lake, Voyageurs National Park, Minnesota

    Get PDF
    The genetically unique population of muskellunge Esox masquinongy inhabiting Shoepack Lake in Voyageurs National Park, Minnesota, is potentially at risk for loss of genetic variability and long-term viability. Shoepack Lake has been subject to dramatic surface area changes from the construction of an outlet dam by beavers Castor canadensis and its subsequent failure. We simulated the long-term dynamics of this population in response to recruitment variation, increased exploitation, and reduced habitat area. We then estimated the effective population size of the simulated population and evaluated potential threats to long-term viability, based on which we recommend management actions to help preserve the long-term viability of the population. Simulations based on the population size and habitat area at the beginning of a companion study resulted in an effective population size that was generally above the threshold level for risk of loss of genetic variability, except when fishing mortality was increased. Simulations based on the reduced habitat area after the beaver dam failure and our assumption of a proportional reduction in population size resulted in an effective population size that was generally below the threshold level for risk of loss of genetic variability. Our results identified two potential threats to the long-term viability of the Shoepack Lake muskellunge population, reduction in habitat area and exploitation. Increased exploitation can be prevented through traditional fishery management approaches such as the adoption of no-kill, barbless hook, and limited entry regulations. Maintenance of the greatest possible habitat area and prevention of future habitat area reductions will require maintenance of the outlet dam built by beavers. Our study should enhance the long-term viability of the Shoepack Lake muskellunge population and illustrates a useful approach for other unique populations

    Physical and biological variables affecting seabird distributions during the upwelling season of the northern California Current

    Get PDF
    Author Posting. © The Authors, 2004. This is the author's version of the work. It is posted here by permission of Elsevier B. V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 52 (2005): 123-143, doi:10.1016/j.dsr2.2004.08.016.As a part of the GLOBEC-Northeast Pacific project, we investigated variation in the abundance of marine birds in the context of biological and physical habitat conditions in the northern portion of the California Current System (CCS) during cruises during the upwelling season 2000. Continuous surveys of seabirds were conducted simultaneously in June (onset of upwelling) and August (mature phase of upwelling) with ocean properties quantified using a towed, undulating vehicle and a multi-frequency bioacoustic instrument (38-420 kHz). Twelve species of seabirds contributed 99% of the total community density and biomass. Species composition and densities were similar to those recorded elsewhere in the CCS during earlier studies of the upwelling season. At a scale of 2-4 km, physical and biological oceanographic variables explained an average of 25% of the variation in the distributions and abundance of the 12 species. The most important explanatory variables (among 14 initially included in each multiple regression model) were distance to upwelling-derived frontal features (center and edge of coastal jet, and an abrupt, inshore temperature gradient), sea-surface salinity, acoustic backscatter representing various sizes of prey (smaller seabird species were associated with smaller prey and the reverse for larger seabird species), and chlorophyll concentration. We discuss the importance of these variables in the context of what factors may be that seabirds use to find food. The high seabird density in the Heceta Bank and Cape Blanco areas indicate them to be refuges contrasting the low seabird densities currently found in most other parts of the CCS, following decline during the recent warm regime of the Pacific Decadal Oscillation.Support from National Science Foundation Grant OCE-0001035, National Oceanic and Atmospheric Administration (NOAA)/Woods Hole Oceanographic Institution-CICOR Grant NA17RJ1223 is gratefully acknowledged
    • 

    corecore