511 research outputs found

    Supersymmetric Baryogenesis from Exotic Quark Decays

    Full text link
    In a simple extension of the minimal supersymmetric standard model, out-of-equilibrium decays of TeV scale exotic vector-like squarks may generate the baryon asymmetry of the universe. Baryon number and CP violation are present in the superpotential, so this mechanism does not rely on CP violation in supersymmetry breaking parameters. We discuss phenomenological constraints on the model as well as potential signals for the Large Hadron Collider and electronic dipole moment experiments. A variation on the TeV scale model allows the exotic squarks to be the messengers of gauge mediated supersymmetry breaking.Comment: 28 pages, 7 figures, 2 appendices, v2: typos corrected, results unchange

    Precipitation in a warming world: Assessing projected hydro-climate changes in California and other Mediterranean climate regions.

    Get PDF
    In most Mediterranean climate (MedClim) regions around the world, global climate models (GCMs) consistently project drier futures. In California, however, projections of changes in annual precipitation are inconsistent. Analysis of daily precipitation in 30 GCMs reveals patterns in projected hydrometeorology over each of the five MedClm regions globally and helps disentangle their causes. MedClim regions, except California, are expected to dry via decreased frequency of winter precipitation. Frequencies of extreme precipitation, however, are projected to increase over the two MedClim regions of the Northern Hemisphere where projected warming is strongest. The increase in heavy and extreme precipitation is particularly robust over California, where it is only partially offset by projected decreases in low-medium intensity precipitation. Over the Mediterranean Basin, however, losses from decreasing frequency of low-medium-intensity precipitation are projected to dominate gains from intensifying projected extreme precipitation. MedClim regions are projected to become more sub-tropical, i.e. made dryer via pole-ward expanding subtropical subsidence. California's more nuanced hydrological future reflects a precarious balance between the expanding subtropical high from the south and the south-eastward extending Aleutian low from the north-west. These dynamical mechanisms and thermodynamic moistening of the warming atmosphere result in increased horizontal water vapor transport, bolstering extreme precipitation events

    Vascular regeneration in a basal chordate is due to the presence of immobile, bi-functional cells.

    Get PDF
    The source of tissue turnover during homeostasis or following injury is usually due to proliferation of a small number of resident, lineage-restricted stem cells that have the ability to amplify and differentiate into mature cell types. We are studying vascular regeneration in a chordate model organism, Botryllus schlosseri, and have previously found that following surgical ablation of the extracorporeal vasculature, new tissue will regenerate in a VEGF-dependent process within 48 hrs. Here we use a novel vascular cell lineage tracing methodology to assess regeneration in parabiosed individuals and demonstrate that the source of regenerated vasculature is due to the proliferation of pre-existing vascular resident cells and not a mobile progenitor. We also show that these cells are bi-potential, and can reversibly adopt two fates, that of the newly forming vessels or the differentiated vascular tissue at the terminus of the vasculature, known as ampullae. In addition, we show that pre-existing vascular resident cells differentially express progenitor and differentiated cell markers including the Botryllus homologs of CD133, VEGFR-2, and Cadherin during the regenerative process

    Improved Bias Correction Techniques for Hydrological Simulations of Climate Change

    Get PDF
    Global climate model (GCM) output typically needs to be bias corrected before it can be used for climate change impact studies. Three existing bias correction methods, and a new one developed here, are applied to daily maximum temperature and precipitation from 21 GCMs to investigate how different methods alter the climate change signal of the GCM. The quantile mapping (QM) and cumulative distribution function transform (CDF-t) bias correction methods can significantly alter the GCM’s mean climate change signal, with differences of up to 2°C and 30% points for monthly mean temperature and precipitation, respectively. Equidistant quantile matching (EDCDFm) bias correction preserves GCM changes in mean daily maximum temperature but not precipitation. An extension to EDCDFm termed PresRat is introduced, which generally preserves the GCM changes in mean precipitation. Another problem is that GCMs can have difficulty simulating variance as a function of frequency. To address this, a frequency-dependent bias correction method is introduced that is twice as effective as standard bias correction in reducing errors in the models’ simulation of variance as a function of frequency, and it does so without making any locations worse, unlike standard bias correction. Last, a preconditioning technique is introduced that improves the simulation of the annual cycle while still allowing the bias correction to take account of an entire season’s values at once

    The Key Role of Heavy Precipitation Events in Climate Model Disagreements of Future Annual Precipitation Changes in California

    Get PDF
    Climate model simulations disagree on whether future precipitation will increase or decrease over California, which has impeded efforts to anticipate and adapt to human-induced climate change. This disagreement is explored in terms of daily precipitation frequency and intensity. It is found that divergent model projections of changes in the incidence of rare heavy (\u3e60 mm day−1) daily precipitation events explain much of the model disagreement on annual time scales, yet represent only 0.3% of precipitating days and 9% of annual precipitation volume. Of the 25 downscaled model projections examined here, 21 agree that precipitation frequency will decrease by the 2060s, with a mean reduction of 6–14 days yr−1. This reduces California\u27s mean annual precipitation by about 5.7%. Partly offsetting this, 16 of the 25 projections agree that daily precipitation intensity will increase, which accounts for a model average 5.3% increase in annual precipitation. Between these conflicting tendencies, 12 projections show drier annual conditions by the 2060s and 13 show wetter. These results are obtained from 16 global general circulation models downscaled with different combinations of dynamical methods [Weather Research and Forecasting (WRF), Regional Spectral Model (RSM), and version 3 of the Regional Climate Model (RegCM3)] and statistical methods [bias correction with spatial disaggregation (BCSD) and bias correction with constructed analogs (BCCA)], although not all downscaling methods were applied to each global model. Model disagreements in the projected change in occurrence of the heaviest precipitation days (\u3e60 mm day−1) account for the majority of disagreement in the projected change in annual precipitation, and occur preferentially over the Sierra Nevada and Northern California. When such events are excluded, nearly twice as many projections show drier future conditions

    Probabilistic estimates of future changes in California temperature and precipitation usingstatistical and dynamical downscaling

    Get PDF
    Sixteen global general circulation models were used to develop probabilistic projections of temperature (T) and precipitation (P) changes over California by the 2060s. The global models were downscaled with two statistical techniques and three nested dynamical regional climate models, although not all global models were downscaled with all techniques. Both monthly and daily timescale changes in T and P are addressed, the latter being important for a range of applications in energy use, water management, and agriculture. The T changes tend to agree more across downscaling techniques than the P changes. Year-to-year natural internal climate variability is roughly of similar magnitude to the projected T changes. In the monthly average, July temperatures shift enough that that the hottest July found in any simulation over the historical period becomes a modestly cool July in the future period. Januarys as cold as any found in the historical period are still found in the 2060s, but the median and maximum monthly average temperatures increase notably. Annual and seasonal P changes are small compared to interannual or intermodel variability. However, the annual change is composed of seasonally varying changes that are themselves much larger, but tend to cancel in the annual mean. Winters show modestly wetter conditions in the North of the state, while spring and autumn show less precipitation. The dynamical downscaling techniques project increasing precipitation in the Southeastern part of the state, which is influenced by the North American monsoon, a feature that is not captured by the statistical downscaling

    Microwave Components with MEMS Switches

    Get PDF
    RF MEMS switches with metal-metal contacts are being developed for microwave applications where broadband, high linearity performance is required. These switches provide less than 0.2 dB insertion loss through 40 GHz. This paper describes the integration of these switches into selected microwave components such as reconfigurable antenna elements, tunable filters, switched delay lines, and SPDT switches. Microwave and millimeter wave measured results from these circuits are presented

    Space Station Engineering Design Issues

    Get PDF
    Space Station Freedom topics addressed include: general design issues; issues related to utilization and operations; issues related to systems requirements and design; and management issues relevant to design
    corecore