6,947 research outputs found

    Averages and moments associated to class numbers of imaginary quadratic fields

    Full text link
    For any odd prime ℓ\ell, let hℓ(−d)h_\ell(-d) denote the ℓ\ell-part of the class number of the imaginary quadratic field Q(−d)\mathbb{Q}(\sqrt{-d}). Nontrivial pointwise upper bounds are known only for ℓ=3\ell =3; nontrivial upper bounds for averages of hℓ(−d)h_\ell(-d) have previously been known only for ℓ=3,5\ell =3,5. In this paper we prove nontrivial upper bounds for the average of hℓ(−d)h_\ell(-d) for all primes ℓ≥7\ell \geq 7, as well as nontrivial upper bounds for certain higher moments for all primes ℓ≥3\ell \geq 3.Comment: 26 pages; minor edits to exposition and notation, to agree with published versio

    Employment Law

    Get PDF

    Simulation model of erosion and deposition on a barchan dune

    Get PDF
    Erosion and deposition over a barchan dune near the Salton Sea, California, are modeled by bookkeeping the quantity of sand in saltation following streamlines of transport. Field observations of near surface wind velocity and direction plus supplemental measurements of the velocity distribution over a scale model of the dune are combined as input to Bagnold type sand transport formulas corrected for slope effects. A unidirectional wind is assumed. The resulting patterns of erosion and deposition compare closely with those observed in the field and those predicted by the assumption of equilibrium (downwind translation of the dune without change in size or geometry). Discrepancies between the simulated results and the observed or predicted erosional patterns appear to be largely due to natural fluctuations in the wind direction. The shape of barchan dunes is a function of grain size, velocity, degree of saturation of the oncoming flow, and the variability in the direction of the oncoming wind. The size of the barchans may be controlled by natural atmospheric scales, by the age of the dunes, or by the upwind roughness. The upwind roughness can be controlled by fixed elements or by sand in the saltation. In the latter case, dune scale is determined by grain size and wind velocity

    On being a {PhD} student of {Robert Harper}

    Get PDF

    High-fidelity simulation of an ultrasonic standing-wave thermoacoustic engine with bulk viscosity effects

    Full text link
    We have carried out boundary-layer-resolved, unstructured fully-compressible Navier--Stokes simulations of an ultrasonic standing-wave thermoacoustic engine (TAE) model. The model is constructed as a quarter-wavelength engine, approximately 4 mm by 4 mm in size and operating at 25 kHz, and comprises a thermoacoustic stack and a coin-shaped cavity, a design inspired by Flitcroft and Symko (2013). Thermal and viscous boundary layers (order of 10 μ\mathrm{\mu}m) are resolved. Vibrational and rotational molecular relaxation are modeled with an effective bulk viscosity coefficient modifying the viscous stress tensor. The effective bulk viscosity coefficient is estimated from the difference between theoretical and semi-empirical attenuation curves. Contributions to the effective bulk viscosity coefficient can be identified as from vibrational and rotational molecular relaxation. The inclusion of the coefficient captures acoustic absorption from infrasonic (∼\sim10 Hz) to ultrasonic (∼\sim100 kHz) frequencies. The value of bulk viscosity depends on pressure, temperature, and frequency, as well as the relative humidity of the working fluid. Simulations of the TAE are carried out to the limit cycle, with growth rates and limit-cycle amplitudes varying non-monotonically with the magnitude of bulk viscosity, reaching a maximum for a relative humidity level of 5%. A corresponding linear model with minor losses was developed; the linear model overpredicts transient growth rate but gives an accurate estimate of limit cycle behavior. An improved understanding of thermoacoustic energy conversion in the ultrasonic regime based on a high-fidelity computational framework will help to further improve the power density advantages of small-scale thermoacoustic engines.Comment: 55th AIAA Aerospace Sciences Meeting, AIAA SciTech, 201

    Inversion of spinning sound fields

    Get PDF
    A method is presented for the reconstruction of rotating monopole source distributions using acoustic pressures measured on a sideline parallel to the source axis. The method requires no \textit{a priori} assumptions about the source other than that its strength at the frequency of interest vary sinusoidally in azimuth on the source disc so that the radiated acoustic field is composed of a single circumferential mode. When multiple azimuthal modes are present, the acoustic field can be decomposed into azimuthal modes and the method applied to each mode in sequence. The method proceeds in two stages, first finding an intermediate line source derived from the source distribution and then inverting this line source to find the radial variation of source strength. A far-field form of the radiation integrals is derived, showing that the far field pressure is a band-limited Fourier transform of the line source, establishing a limit on the quality of source reconstruction which can be achieved using far-field measurements. The method is applied to simulated data representing wind-tunnel testing of a ducted rotor system (tip Mach number~0.74) and to control of noise from an automotive cooling fan (tip Mach number~0.14), studies which have appeared in the literature of source identification.Comment: Revised version of paper submitted to JASA; five more figures; expanded content with more discussion of error behaviour and relation to Nearfield Acoustical Holograph

    Readout of solid-state charge qubits using a single-electron pump

    Full text link
    A major difficulty in realizing a solid-state quantum computer is the reliable measurement of the states of the quantum registers. In this paper, we propose an efficient readout scheme making use of the resonant tunneling of a ballistic electron produced by a single electron pump. We treat the measurement interaction in detail by modeling the full spatial configuration, and show that for pumped electrons with suitably chosen energy the transmission coefficient is very sensitive to the qubit state. We further show that by using a short sequence of pumping events, coupled with a simple feedback control procedure, the qubit can be measured with high accuracy.Comment: 5 pages, revtex4, 4 eps figures. v2: published versio
    • …
    corecore