264 research outputs found

    Biological aspects of mTOR in leukemia

    Get PDF
    The mammalian target of rapamycin (mTOR) is a central processor of intra-and extracellular signals, regulating many fundamental cellular processes such as metabolism, growth, proliferation, and survival. Strong evidences have indicated that mTOR dysregulation is deeply implicated in leukemogenesis. This has led to growing interest in the development of modulators of its activity for leukemia treatment. This review intends to provide an outline of the principal biological and molecular functions of mTOR. We summarize the current understanding of how mTOR interacts with microRNAs, with components of cell metabolism, and with controllers of apoptotic machinery. Lastly, from a clinical/translational perspective, we recapitulate the therapeutic results in leukemia, obtained by using mTOR inhibitors as single agents and in combination with other compounds

    Bimanual non-congruent actions in motor neglect syndrome: A combined behavioral/fMRI study

    Get PDF
    In Motor Neglect (MN) syndrome, a specific impairment in non-congruent bimanual movements has been described. In the present case-control study, we investigated the neuro-functional correlates of this behavioral deficit. Two right-brain-damaged (RBD) patients, one with (MN+) and one without (MN−) MN, were evaluated by means of functional Magnetic Resonance Imaging (fMRI) in a bimanual Circles-Lines (CL) paradigm. Patients were requested to perform right-hand movements (lines-drawing) and, simultaneously, congruent (lines-drawing) or non-congruent (circles-drawing) left-hand movements. In the behavioral task, MN− patient showed a bimanual-coupling-effect, while MN+ patient did not. The fMRI study showed that in MN−, a fronto-parietal network, mainly involving the pre-supplementary motor area (pre-SMA) and the posterior parietal cortex (PPC), was significantly more active in non-congruent than in congruent conditions, as previously shown in healthy subjects. On the contrary, MN+ patient showed an opposite pattern of activation both in pre-SMA and in PPC. Within this fronto-parietal network, the pre-SMA is supposed to exert an inhibitory influence on the default coupling of homologous muscles, thus allowing the execution of non-congruent movements. In MN syndrome, the described abnormal pre-SMA activity supports the hypothesis that a failure to inhibit ipsilesional motor programs might determine a specific impairment of non-congruent movements

    Neurotrophins Regulate Bone Marrow Stromal Cell IL-6 Expression through the MAPK Pathway

    Get PDF
    The host's response to infection is characterized by altered levels of neurotrophins and an influx of inflammatory cells to sites of injured tissue. Progenitor cells that give rise to the differentiated cellular mediators of inflammation are derived from bone marrow progenitor cells where their development is regulated, in part, by cues from bone marrow stromal cells (BMSC). As such, alteration of BMSC function in response to elevated systemic mediators has the potential to alter their function in biologically relevant ways, including downstream alteration of cytokine production that influences hematopoietic development.In the current study we investigated BMSC neurotrophin receptor expression by flow cytometric analysis to determine differences in expression as well as potential to respond to NGF or BDNF. Intracellular signaling subsequent to neurotrophin stimulation of BMSC was analyzed by western blot, microarray analysis, confocal microscopy and real-time PCR. Analysis of BMSC Interleukin-6 (IL-6) expression was completed using ELISA and real-time PCR.BMSC established from different individuals had distinct expression profiles of the neurotrophin receptors, TrkA, TrkB, TrkC, and p75(NTR). These receptors were functional, demonstrated by an increase in Akt-phosphorylation following BMSC exposure to recombinant NGF or BDNF. Neurotrophin stimulation of BMSC resulted in increased IL-6 gene and protein expression which required activation of ERK and p38 MAPK signaling, but was not mediated by the NFkappaB pathway. BMSC response to neurotrophins, including the up-regulation of IL-6, may alter their support of hematopoiesis and regulate the availability of inflammatory cells for migration to sites of injury or infection. As such, these studies are relevant to the growing appreciation of the interplay between neurotropic mediators and the regulation of hematopoiesis

    NGF Is an Essential Survival Factor for Bronchial Epithelial Cells during Respiratory Syncytial Virus Infection

    Get PDF
    Background: Overall expression of neurotrophins in the respiratory tract is upregulated in infants infected by the respiratory syncytial virus (RSV), but it is unclear where (structural vs. inflammatory cells, upper vs. lower airways) and why, these changes occur. We analyzed systematically the expression of neurotrophic factors and receptors following RSV infection of human nasal, tracheal, and bronchial epithelial cells, and tested the hypothesis that neurotrophins work as innate survival factors for infected respiratory epithelia. Methodology: Expression of neurotrophic factors (nerve growth factor, NGF; brain-derived neurotrophic factor, BDNF) and receptors (trkA, trkB, p75) was analyzed at the protein level by immunofluorescence and flow cytometry and at the mRNA level by real-time PCR. Targeted siRNA was utilized to blunt NGF expression, and its effect on virus-induced apoptosis/ necrosis was evaluated by flow cytometry following annexin V/7-AAD staining. Principal Findings: RSV infection was more efficient in cells from more distal (bronchial) vs. more proximal origin. In bronchial cells, RSV infection induced transcript and protein overexpression of NGF and its high-affinity receptor trkA, with concomitant downregulation of the low-affinity p75 NTR. In contrast, tracheal cells exhibited an increase in BDNF, trkA and trkB, and nasal cells increased only trkA. RSV-infected bronchial cells transfected with NGF-specific siRNA exhibited decreased trkA and increased p75 NTR expression. Furthermore, the survival of bronchial epithelial cells was dramaticall

    Pathophysiological mechanisms for the respiratory syncytial virus-reactive airway disease link

    Get PDF
    There is substantial epidemiological evidence supporting the concept that respiratory syncytial virus (RSV) lower respiratory tract infection in infancy may be linked to the development of reactive airway disease (RAD) in childhood. However, much less is known concerning the mechanisms by which this self-limiting infection leads to airway dysfunction that persists long after the virus is cleared from the lungs. A better understanding of the RSV–RAD link may have important clinical implications, particularly because prevention of RSV lower respiratory tract infection may reduce the occurrence of RAD later in life. Among the mechanisms proposed to explain the chronic sequelae of RSV infection is the interaction between the subepithelial neural network of the airway mucosa and the cellular effectors of inflammatory and immune responses to the virus. The body of clinical literature linking RSV and RAD is reviewed herein, as are the cellular and molecular mechanisms of neuroimmune interactions and neural remodeling that may underlie this link, and the possibility that preventing the infection may result in a decreased incidence of its chronic sequelae

    Induction of Tachykinin Production in Airway Epithelia in Response to Viral Infection

    Get PDF
    The tachykinins are implicated in neurogenic inflammation and the neuropeptide substance P in particular has been shown to be a proinflammatory mediator. A role for the tachykinins in host response to lung challenge has been previously demonstrated but has been focused predominantly on the release of the tachykinins from nerves innervating the lung. We have previously demonstrated the most dramatic phenotype described for the substance P encoding gene preprotachykinin-A (PPT-A) to date in controlling the host immune response to the murine gammaherpesvirus 68, in the lung.In this study we have utilised transgenic mice engineered to co-ordinately express the beta-galactosidase marker gene along with PPT-A to facilitate the tracking of PPT-A expression. Using a combination of these mice and conventional immunohistology we now demonstrate that PPT-A gene expression and substance P peptide are induced in cells of the respiratory tract including tracheal, bronchiolar and alveolar epithelial cells and macrophages after viral infection. This induction was observed 24h post infection, prior to observable inflammation and the expression of pro-inflammatory chemokines in this model. Induced expression of the PPT-A gene and peptide persisted in the lower respiratory tract through day 7 post infection.Non-neuronal PPT-A expression early after infection may have important clinical implications for the progression or management of lung disease or infection aside from the well characterised later involvement of the tachykinins during the inflammatory response

    Considerations on antimicrobial prophylaxis in patients with lymphoproliferative diseases: A SEIFEM group position paper

    Get PDF
    The therapeutic armamentarium for the treatment of patients with lymphoproliferative diseases has grown considerably over the most recent years, including a large use of new immunotherapeutic agents. As a consequence, the epidemiology of infectious complications in this group of patients is poorly documented, and even more importantly, the potential benefit of antimicrobial prophylaxis remains a matter of debate when considering the harmful effect from the emergence of multidrug resistant pathogens. The present position paper is addressed to all hematologists treating patients affected by lymphoproliferative malignancies with the aim to provide clinicians with a useful tool for the prevention of bacterial, fungal and viral infections

    MicroRNA-221 Modulates RSV Replication in Human Bronchial Epithelium by Targeting NGF Expression

    Get PDF
    Background: Early-life infection by respiratory syncytial virus (RSV) is associated with aberrant expression of the prototypical neurotrophin nerve growth factor (NGF) and its cognate receptors in human bronchial epithelium. However, the chain of events leading to this outcome, and its functional implications for the progression of the viral infection, has not been elucidated. This study sought to test the hypothesis that RSV infection modulates neurotrophic pathways in human airways by silencing the expression of specific microRNAs (miRNAs), and that this effect favors viral growth by interfering with programmed death of infected cells. Methodology: Human bronchial epithelial cells infected with green fluorescent protein-expressing RSV (rgRSV) were screened with multiplex qPCR arrays, and miRNAs significantly affected by the virus were analyzed for homology with mRNAs encoding neurotrophic factors or receptors. Mimic sequences of selected miRNAs were transfected into noninfected bronchial cells to confirm the role of each of them in regulating neurotrophins expression at the gene and protein level, and to study their influence on cell cycle and viral replication. Principal Findings: RSV caused downregulation of 24 miRNAs and upregulation of 2 (p,0.01). Homology analysis of microarray data revealed that 6 of those miRNAs exhibited a high degree of complementarity to NGF and/or one of its cognate receptors TrKA and p75 NTR. Among the selected miRNAs, miR-221 was significantly downregulated by RSV and it
    • …
    corecore