25 research outputs found
Baroclinic Rossby radius of deformation in the southern Baltic Sea
The first baroclinic Rossby radius of deformation (R1) is a fundamental horizontal scale of mesoscale processes. This scale is important for planning both numerical modelling and study areas. R1 was computed on the basis of an 11-year series of high resolution CTD measurements collected during r/v "Oceania" cruises. The data set covered the three main basins of the Baltic Proper: the Bornholm Basin (BB), the Słupsk Furrow (SF) and the Gdańsk Basin (GB). The smallest mean value of R1 was found in the Gdańsk Basin (5.2 km), the largest one in the Bornholm Deep (7.3 km). The seasonal variability of R1 is lower in the western basin than in the eastern one. The seasonal cycle of R1 may be broken by extreme events, e.g. main Baltic inflows (MBI) of saline water. The inflowing water rebuilds the vertical stratification in the southern Baltic Sea and dramatically changes the R1 values. The difference of R1 between a stagnation period and an inflow situation is shown on the basis of observations made during 2002-2003. The main inflow occurred in winter, after ten years of stagnation, and the very low values of R1 (about 4 km) changed to very high ones (more than 9 km). Analysis of stagnation and saltwater inflow events may throw light on the value of R1 in future climatic scenarios. The potential influence of climate change on Baltic Sea salinity, especially a decrease in MBI activity, may change the baroclinic Rossby radius of deformation and the mesoscale dynamics. Values of R1 are expected to be lower in the future climate than those measured nowadays
The 42nd Symposium Chromatographic Methods of Investigating Organic Compounds : Book of abstracts
The 42nd Symposium Chromatographic Methods of Investigating Organic Compounds : Book of abstracts. June 4-7, 2019, Szczyrk, Polan
Warming of the West Spitsbergen Current and sea ice north of Svalbard
This research was supported by a grant from the Fifth European Union Frame-work Programme project ASOF-N, contract EVK2-CT-200200139, the Sixth Frame-work Programme DAMOCLES, contract 018509GOCE, and grants from the Polish Ministry of Science and Higher Education, decisions 61/N-IPY/2007/0 and 175/IPY/2007/01.AbstractAccording to the results of recent research, besides the atmospheric circulation, it is heat transport to the Arctic Ocean (AO) by ocean currents, the West Spitsbergen Current (WSC) in particular, that is playing a significant role in the process of Arctic warming. Data collected by the Institute of Oceanology, Polish Academy of Sciences (IO PAS), in the Norwegian and Greenland Seas, and Fram Strait during the last 20 years reveal considerable changes in the amount of heat transported by the WSC into the Arctic Ocean. An increase in Atlantic Water (AW) temperature and the intensification of heat transport were observed in 2004-06; after this period, both parameters decreased. The aim of this study was to find out whether the fluctuations in heat input by the WSC have influenced the sea-ice distribution around Svalbard. In fact they do, but oceanic heat transport should nonetheless be regarded as just one of many processes influencing sea-ice behaviour