64 research outputs found
Modulatory effects of levodopa on cerebellar connectivity in Parkinsonâs disease
Levodopa has been the mainstay of symptomatic therapy for Parkinsonâs disease (PD) for the last five decades. However, it is associated with the development of motor fluctuations and dyskinesia, in particular after several years of treatment. The aim of this study was to shed light on the acute brain functional reorganization in response to a single levodopa dose. Functional magnetic resonance imaging (fMRI) was performed after an overnight withdrawal of dopaminergic treatment and 1 h after a single dose of 250 mg levodopa in a group of 24 PD patients. Eigenvector centrality was calculated in both treatment states using resting-state fMRI. This offers a new data-driven and parameter-free approach, similar to Googleâs PageRank algorithm, revealing brain connectivity alterations due to the effect of levodopa treatment. In all PD patients, levodopa treatment led to an improvement of clinical symptoms as measured with the Unified Parkinsonâs Disease Rating Scale motor score (UPDRS-III). This therapeutic effect was accompanied with a major connectivity increase between cerebellar brain regions and subcortical areas of the motor system such as the thalamus, putamen, globus pallidus, and brainstem. The degree of interconnectedness of cerebellar regions correlated with the improvement of clinical symptoms due to the administration of levodopa. We observed significant functional cerebellar connectivity reorganization immediately after a single levodopa dose in PD patients. Enhanced general connectivity (eigenvector centrality) was associated with better motor performance as assessed by UPDRS-III score. This underlines the importance of considering cerebellar networks as therapeutic targets in PD
Oneâweek escitalopram intake alters the excitationâinhibition balance in the healthy female brain
Neural health relies on cortical excitation-inhibition balance (EIB). Previous research suggests a link between increased cortical excitation and neuroplasticity induced by selective serotonin reuptake inhibitors (SSRIs). Whether there are modulations of EIB following SSRI-administration in the healthy human brain, however, remains unclear. Thus, in a randomized double-blind study, we administered a clinically relevant dose of 20 mg escitalopram for 7 days (time when steady state is achieved) in 59 healthy women (28 escitalopram, 31 placebo) on oral contraceptives. We acquired resting-state electroencephalography data at baseline, after a single dose, and at steady state. We assessed 1/f slope of the power spectrum as a marker of EIB, compared individual trajectories of 1/f slope changes contrasting single dose and 1-week drug intake, and tested the relationship of escitalopram plasma levels and cortical excitatory and inhibitory balance shifts. Escitalopram-intake was associated with decreased 1/f slope, indicating an EIB shift in favor of excitation. Furthermore, 1/f slope at baseline and after a single dose of escitalopram was associated with 1/f slope at steady state. Higher plasma escitalopram levels at a single dose were associated with better maintenance of these EIB changes throughout the drug administration week. These findings demonstrate the potential for 1/f slope to predict individual cortical responsivity to SSRIs and widen the lens through which we map the human brain by testing an interventional psychopharmacological design in a clearly defined endocrinological state
The attention-emotion interaction in healthy female participants on oral contraceptives during 1-week escitalopram intake
Previous findings in healthy humans suggest that selective serotonin reuptake inhibitors (SSRIs) modulate emotional processing via earlier changes in attention. However, many previous studies have provided inconsistent findings. One possible reason for such inconsistencies is that these studies did not control for the influence of either sex or sex hormone fluctuations. To address this inconsistency, we administered 20 mg escitalopram or placebo for seven consecutive days in a randomized, double-blind, placebo-controlled design to sixty healthy female participants with a minimum of 3 months oral contraceptive (OC) intake. Participants performed a modified version of an emotional flanker task before drug administration, after a single dose, after 1 week of SSRI intake, and after a 1-month wash-out period. Supported by Bayesian analyses, our results do not suggest a modulatory effect of escitalopram on behavioral measures of early attentional-emotional interaction in female individuals with regular OC use. While the specific conditions of our task may be a contributing factor, it is also possible that a practice effect in a healthy sample may mask the effects of escitalopram on the attentional-emotional interplay. Consequently, 1 week of escitalopram administration may not modulate attention toward negative emotional distractors outside the focus of attention in healthy female participants taking OCs. While further research in naturally cycling females and patient samples is needed, our results represent a valuable contribution toward the preclinical investigation of antidepressant treatment
Decreased thalamo-cortico connectivity during an implicit sequence motor learning task and 7Â days escitalopram intake
Evidence suggests that selective serotonin reuptake inhibitors (SSRIs) reorganize neural networks via a transient window of neuroplasticity. While previous findings support an effect of SSRIs on intrinsic functional connectivity, little is known regarding the influence of SSRI-administration on connectivity during sequence motor learning. To investigate this, we administered 20 mg escitalopram or placebo for 1-week to 60 healthy female participants undergoing concurrent functional magnetic resonance imaging and sequence motor training in a double-blind randomized controlled design. We assessed task-modulated functional connectivity with a psycho-physiological interaction (PPI) analysis in the thalamus, putamen, cerebellum, dorsal premotor, primary motor, supplementary motor, and dorsolateral prefrontal cortices. Comparing an implicit sequence learning condition to a control learning condition, we observed decreased connectivity between the thalamus and bilateral motor regions after 7 days of escitalopram intake. Additionally, we observed a negative correlation between plasma escitalopram levels and PPI connectivity changes, with higher escitalopram levels being associated with greater thalamo-cortico decreases. Our results suggest that escitalopram enhances network-level processing efficiency during sequence motor learning, despite no changes in behaviour. Future studies in more diverse samples, however, with quantitative imaging of neurochemical markers of excitation and inhibition, are necessary to further assess neural responses to escitalopram
Assessment of reward-related brain function after a single-dose of oxytocin in autism: A randomized controlled trial
Background Autism spectrum disorder (ASD) is characterized by difficulties in social communication and interaction, which have been related to atypical neural processing of rewards, especially in the social domain. Since intranasal oxytocin has been shown to modulate activation of the brainâs reward circuit, oxytocin might ameliorate the processing of social rewards in ASD and thus improve social difficulties. Methods In this randomized, double-blind, placebo-controlled, crossover fMRI study, we examined effects of a 24 IU dose of intranasal oxytocin on reward-related brain function in 37 men with ASD without intellectual impairment and 37 age- and IQ-matched control participants. Participants performed an incentive delay task that allows the investigation of neural activity associated with the anticipation and receipt of monetary and social rewards. Results Non-significant tests suggested that oxytocin did not influence neural processes related to the anticipation of social or monetary rewards in either group. Complementary Bayesian analyses indicated moderate evidence for a null model, relative to an alternative model. Our results are inconclusive regarding possible oxytocin effects on amygdala responsiveness to social rewards during reward consumption. There were no significant differences in reward-related brain function between the two groups under placebo. Conclusions Our results do not support the hypothesis that intranasal oxytocin generally enhances activation of reward-related neural circuits in men with and without ASD
Lack of Matrilin-2 Favors Liver Tumor Development via Erk1/2 and GSK-3 beta Pathways In Vivo
Matrilin-2 (Matn2) is a multidomain adaptor protein which plays a role in the assembly of extracellular matrix (ECM). It is produced by oval cells during stem cell-driven liver regeneration. In our study, the impact of Matn2 on hepatocarcinogenesis was investigated in Matn2(-/-) mice comparing them with wild-type (WT) mice in a diethylnitrosamine (DEN) model. The liver tissue was analyzed macroscopically, histologically and immunohistochemically, at protein level by Proteome Profiler Arrays and Western blot analysis. Matn2(-/-) mice exhibited higher susceptibility to hepatocarcinogenesis compared to wild-type mice. In the liver of Matn2(-/-) mice, spontaneous microscopic tumor foci were detected without DEN treatment. After 15 mu g/g body weight DEN treatment, the liver of Matn2(-/-) mice contained macroscopic tumors of both larger number and size than the WT liver. In contrast with the WT liver, spontaneous phosphorylation of EGFR, Erk1/2 GSK-3 alpha/beta and retinoblastoma protein (p-Rb), decrease in p21/CIP1 level, and increase in beta-Catenin protein expression were detected in Matn2(-/-) livers. Focal Ki-67 positivity of these samples provided additional support to our presumption that the lack of Matn2 drives the liver into a pro-proliferatory state, making it prone to tumor development. This enhanced proliferative capacity was further increased in the tumor nodules of DEN-treated Matn2(-/-) livers. Our study suggests that Matn2 functions as a tumor suppressor in hepatocarcinogenesis, and in this process activation of EGFR together with that of Erk1/2, as well as inactivation of GSK-3 beta, play strategic roles
Restoration of Podocyte Structure and Improvement of Chronic Renal Disease in Transgenic Mice Overexpressing Renin
Proteinuria is a major marker of the decline of renal function and an important risk factor of coronary heart disease. Elevated proteinuria is associated to the disruption of slit-diaphragm and loss of podocyte foot processes, structural alterations that are considered irreversible. The objective of the present study was to investigate whether proteinuria can be reversed and to identify the structural modifications and the gene/protein regulation associated to this reversal.We used a novel transgenic strain of mouse (RenTg) that overexpresses renin at a constant high level. At the age of 12-month, RenTg mice showed established lesions typical of chronic renal disease such as peri-vascular and periglomerular inflammation, glomerular ischemia, glomerulosclerosis, mesangial expansion and tubular dilation. Ultrastructural analysis indicated abnormal heterogeneity of basement membrane thickness and disappearance of podocyte foot processes. These structural alterations were accompanied by decreased expressions of proteins specific of podocyte (nephrin, podocin), or tubular epithelial cell (E-cadherin and megalin) integrity. In addition, since TGFbeta is considered the major pro-fibrotic agent in renal disease and since exogenous administration of BMP7 is reported to antagonize the TGFbeta-induced phenotype changes in kidney, we have screened the expressions of several genes belonging in the TGFbeta/BMP superfamily. We found that the endogenous inhibitors of BMPs such as noggin and Usag-1 were several-fold activated inhibiting the action of BMPs and thus reinforcing the deleterious action of TGFbeta.Treatment with an AT1 receptor antagonist, at dose that did not decrease arterial pressure, gradually reduced albuminuria. This decrease was accompanied by re-expression of podocin, nephrin, E-cadherin and megalin, and reappearance of podocyte foot processes. In addition, expressions of noggin and Usag-1 were markedly decreased, permitting thus activation of the beneficial action of BMPs.These findings show that proteinuria and alterations in the expression of proteins involved in the integrity and function of glomerular and renal epithelial phenotype are reversible events when the local action of angiotensin II is blocked, and provide hope that chronic renal disease can be efficiently treated
Introduction to a Culturally Sensitive Measure of Well-Being: Combining Life Satisfaction and Interdependent Happiness Across 49 Different Cultures
How can one conclude that well-being is higher in country A than country B, when well-being is being measured according to the way people in country A think about well-being? We address this issue by proposing a new culturally sensitive method to comparing societal levels of well-being. We support our reasoning with data on life satisfaction and interdependent happiness focusing on individual and family, collected mostly from students, across forty-nine countries. We demonstrate that the relative idealization of the two types of well-being varies across cultural contexts and are associated with culturally different models of selfhood. Furthermore, we show that rankings of societal well-being based on life satisfaction tend to underestimate the contribution from interdependent happiness. We introduce a new culturally sensitive method for calculating societal well-being, and examine its construct validity by testing for associations with the experience of emotions and with individualism-collectivism. This new culturally sensitive approach represents a slight, yet important improvement in measuring well-being
- âŠ