121 research outputs found

    Swiss family physicians' perceptions and attitudes towards knowledge translation practices.

    Get PDF
    BACKGROUND: Several studies have been performed to understand the way family physicians apply knowledge from medical research in practice. However, very little is known concerning family physicians in Switzerland. In an environment in which information constantly accumulates, it is crucial to identify the major sources of scientific information that are used by family physicians to keep their medical knowledge up to date and barriers to use these sources. Our main objective was to examine medical knowledge translation (KT) practices of Swiss family physicians. METHODS: The population consisted of French- and German-speaking private practice physicians specialised in family medicine. We conducted four interviews and three focus groups (n = 25). The interview guides of the semi-structured interviews and focus groups focused on (a) ways and means used by physicians to keep updated with information relevant to clinical practice; (b) how they consider their role in translating knowledge into practice; (c) potential barriers to KT; (d) solutions proposed by physicians for effective KT. RESULTS: Family physicians find themselves rather ambivalent about the translation of knowledge based on scientific literature, but generally express much interest in KT. They often feel overwhelmed by "information floods" and perceive clinical practice guidelines and other supports to be of limited usefulness for their practice. They often combine various formal and informal information sources to keep their knowledge up to date. Swiss family physicians report considering themselves as artisans, caring for patients with complex needs. CONCLUSION: Improved performance of KT initiatives in family medicine should be tailored to actual needs and based on high quality evidence-based sources

    Meeting physicians' needs: a bottom-up approach for improving the implementation of medical knowledge into practice.

    Get PDF
    Multiple barriers to knowledge translation in medicine have been identified (ranging from information overload to abstraction of models), leading to important implementation gaps. This study aimed at assessing the suggestions of practicing physicians for possible improvements of knowledge translation (KT) effectiveness into clinical practice. We used a mixed methods design. French- German- and Italian-speaking general practitioners, psychiatrists, orthopaedic surgeons, cardiologists, and diabetologists practicing in Switzerland were interrogated through semi-structured interviews, focus group discussions, and an online survey. A total of 985 physicians from three regions of Switzerland participated in the online survey, whereas 39 participated in focus group discussions and 14 in face-to-face interviews. Physicians expressed limitations and difficulties related to KT into their daily practice. Several barriers were identified, including influence and pressure of pharmaceutical companies, non-publication of negative results, mismatch between guidelines and practice, education gaps, and insufficient collaboration between research and practice. Suggestions to overcome barriers were improving education concerning the evaluation of scientific publications, expanding applicability of guidelines, having free and easy access to independent journals, developing collaborations between research and practice, and creating tools to facilitate access to medical information. Our study provides suggestions for improving KT into daily medical practice, matching the views, needs and preferences of practicing physicians. Responding to suggestions for improvements brought up by physicians may lead to better knowledge translation, higher professional satisfaction, and better healthcare outcomes

    Energy efficiency and using less – a social sciences and humanities annotated bibliography

    Get PDF
    The challenge: * Technological progress and changes in energy supply are not sufficient for a transition to a low-carbon energy system; demand also needs to be considered. Energy efficiency and reducing total consumption - the topics of this bibliography - are typical elements of a demand side approach. * The uptake of energy efficient technologies, and understanding how we might use less energy, represent big challenges for researchers, policymakers, practitioners and end-users themselves. The aim: * European energy policy has so far mainly relied on research from Science, Technology, Engineering and Mathematics (STEM) disciplines. Energy-related Social Sciences and Humanities (SSH) have been significantly underrepresented. This bibliography aims to discuss different disciplinary perspectives on energy efficiency and using less and to demonstrate their relevance for energy policy. Coverage: * A major focus of this bibliography is on behaviour and behavioural change. The bibliography highlights the diversity of end-users and their needs, the impacts they experience, abilities, as well as the range of sites where energy is consumed. * It also looks at how SSH research addresses more structural elements of demand - such as markets, institutions, and policy - and how these interact. Key findings: * There is no such thing as a one size fits all approach; different disciplines frame the problems of energy efficiency and using less differently, and do not always agree. Economics is very highly represented in research about energy efficiency, closely followed by Sociology. Other disciplines such as Urban Studies and Industrial Design are slowly becoming part of the work. * Most disciplines focus mainly on mainstream types of users and use. Fewer studies focus on the exceptions - deviants, others, non-users or energy poor, excessive users - or low-energy practices such as sleep, music making or sports. * Electricity is the main focus of most social science research on energy use and efficiency, possibly due to a focus on monitoring savings which is more difficult for gas and energy for hot water use. * There is an overrepresentation of work on feedback devices and smart meters, in contrast to more everyday technologies such as water heaters or washing machines. Several studies urge for more study of this everyday material culture because it strongly shapes how users can engage in using less or using more efficiently; some technologies are simply built to have high energy use. * Less research is done on the responsibility of stakeholders (other than the end-user) for the energy transition, especially the market. It is argued that markets are not neutral or depoliticised, but bear responsibility for the energy transition too. * Dominant areas of research include: a focus on the gap between awareness and actual energy behaviour action; and rebound effects, which may arise when increased energy efficiency leads to lower costs for energy which in turn may lead to increased energy consumption. * New areas of research include new demand side initiatives, services/business models and markets such as peer-to-peer, DIY, and community approaches to engagement. * Most demand side approaches in the policy domain focus on cost reduction, education and communication. Insights from Social Sciences such as Sociology, Anthropology, Urban studies, Ethics, and Science and Technology Studies see less uptake in the policy domain

    An RNA Polymerase III-Dependent Heterochromatin Barrier at Fission Yeast Centromere 1

    Get PDF
    Heterochromatin formation involves the nucleation and spreading of structural and epigenetic features along the chromatin fiber. Chromatin barriers and associated proteins counteract the spreading of heterochromatin, thereby restricting it to specific regions of the genome. We have performed gene expression studies and chromatin immunoprecipitation on strains in which native centromere sequences have been mutated to study the mechanism by which a tRNAAlanine gene barrier (cen1 tDNAAla) blocks the spread of pericentromeric heterochromatin at the centromere of chromosome 1 (cen1) in the fission yeast, Schizosaccharomyces pombe. Within the centromere, barrier activity is a general property of tDNAs and, unlike previously characterized barriers, requires the association of both transcription factor IIIC and RNA Polymerase III. Although the cen1 tDNAAla gene is actively transcribed, barrier activity is independent of transcriptional orientation. These findings provide experimental evidence for the involvement of a fully assembled RNA polymerase III transcription complex in defining independent structural and functional domains at a eukaryotic centromere

    Protecting a transgene expression from the HAC-based vector by different chromatin insulators

    Get PDF
    Human artificial chromosomes (HACs) are vectors that offer advantages of capacity and stability for gene delivery and expression. Several studies have even demonstrated their use for gene complementation in gene-deficient recipient cell lines and animal transgenesis. Recently, we constructed an advance HAC-based vector, alphoid(tetO)-HAC, with a conditional centromere. In this HAC, a gene-loading site was inserted into a centrochromatin domain critical for kinetochore assembly and maintenance. While by definition this domain is permissive for transcription, there have been no long-term studies on transgene expression within centrochromatin. In this study, we compared the effects of three chromatin insulators, cHS4, gamma-satellite DNA, and tDNA, on the expression of an EGFP transgene inserted into the alphoid(tetO)-HAC vector. Insulator function was essential for stable expression of the transgene in centrochromatin. In two analyzed host cell lines, a tDNA insulator composed of two functional copies of tRNA genes showed the highest barrier activity. We infer that proximity to centrochromatin does not protect genes lacking chromatin insulators from epigenetic silencing. Barrier elements that prevent gene silencing in centrochromatin would thus help to optimize transgenesis using HAC vectors. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00018-013-1362-9) contains supplementary material, which is available to authorized users

    Misregulation of Scm3p/HJURP Causes Chromosome Instability in Saccharomyces cerevisiae and Human Cells

    Get PDF
    The kinetochore (centromeric DNA and associated proteins) is a key determinant for high fidelity chromosome transmission. Evolutionarily conserved Scm3p is an essential component of centromeric chromatin and is required for assembly and function of kinetochores in humans, fission yeast, and budding yeast. Overexpression of HJURP, the mammalian homolog of budding yeast Scm3p, has been observed in lung and breast cancers and is associated with poor prognosis; however, the physiological relevance of these observations is not well understood. We overexpressed SCM3 and HJURP in Saccharomyces cerevisiae and HJURP in human cells and defined domains within Scm3p that mediate its chromosome loss phenotype. Our results showed that the overexpression of SCM3 (GALSCM3) or HJURP (GALHJURP) caused chromosome loss in a wild-type yeast strain, and overexpression of HJURP led to mitotic defects in human cells. GALSCM3 resulted in reduced viability in kinetochore mutants, premature separation of sister chromatids, and reduction in Cse4p and histone H4 at centromeres. Overexpression of CSE4 or histone H4 suppressed chromosome loss and restored levels of Cse4p at centromeres in GALSCM3 strains. Using mutant alleles of scm3, we identified a domain in the N-terminus of Scm3p that mediates its interaction with CEN DNA and determined that the chromosome loss phenotype of GALSCM3 is due to centromeric association of Scm3p devoid of Cse4p/H4. Furthermore, we determined that similar to other systems the centromeric association of Scm3p is cell cycle regulated. Our results show that altered stoichiometry of Scm3p/HJURP, Cse4p, and histone H4 lead to defects in chromosome segregation. We conclude that stringent regulation of HJURP and SCM3 expression are critical for genome stability

    Rad3ATR Decorates Critical Chromosomal Domains with γH2A to Protect Genome Integrity during S-Phase in Fission Yeast

    Get PDF
    Schizosaccharomyces pombe Rad3 checkpoint kinase and its human ortholog ATR are essential for maintaining genome integrity in cells treated with genotoxins that damage DNA or arrest replication forks. Rad3 and ATR also function during unperturbed growth, although the events triggering their activation and their critical functions are largely unknown. Here, we use ChIP-on-chip analysis to map genomic loci decorated by phosphorylated histone H2A (γH2A), a Rad3 substrate that establishes a chromatin-based recruitment platform for Crb2 and Brc1 DNA repair/checkpoint proteins. Unexpectedly, γH2A marks a diverse array of genomic features during S-phase, including natural replication fork barriers and a fork breakage site, retrotransposons, heterochromatin in the centromeres and telomeres, and ribosomal RNA (rDNA) repeats. γH2A formation at the centromeres and telomeres is associated with heterochromatin establishment by Clr4 histone methyltransferase. We show that γH2A domains recruit Brc1, a factor involved in repair of damaged replication forks. Brc1 C-terminal BRCT domain binding to γH2A is crucial in the absence of Rqh1Sgs1, a RecQ DNA helicase required for rDNA maintenance whose human homologs are mutated in patients with Werner, Bloom, and Rothmund–Thomson syndromes that are characterized by cancer-predisposition or accelerated aging. We conclude that Rad3 phosphorylates histone H2A to mobilize Brc1 to critical genomic domains during S-phase, and this pathway functions in parallel with Rqh1 DNA helicase in maintaining genome integrity

    Silent chromatin at the middle and ends: lessons from yeasts

    Get PDF
    Eukaryotic centromeres and telomeres are specialized chromosomal regions that share one common characteristic: their underlying DNA sequences are assembled into heritably repressed chromatin. Silent chromatin in budding and fission yeast is composed of fundamentally divergent proteins tat assemble very different chromatin structures. However, the ultimate behaviour of silent chromatin and the pathways that assemble it seem strikingly similar among Saccharomyces cerevisiae (S. cerevisiae), Schizosaccharomyces pombe (S. pombe) and other eukaryotes. Thus, studies in both yeasts have been instrumental in dissecting the mechanisms that establish and maintain silent chromatin in eukaryotes, contributing substantially to our understanding of epigenetic processes. In this review, we discuss current models for the generation of heterochromatic domains at centromeres and telomeres in the two yeast species

    Sequence Features and Transcriptional Stalling within Centromere DNA Promote Establishment of CENP-A Chromatin

    Get PDF
    Centromere sequences are not conserved between species, and there is compelling evidence for epigenetic regulation of centromere identity, with location being dictated by the presence of chromatin containing the histone H3 variant CENP-A. Paradoxically, in most organisms CENP-A chromatin generally occurs on particular sequences. To investigate the contribution of primary DNA sequence to establishment of CENP-A chromatin in vivo, we utilised the fission yeast Schizosaccharomyces pombe. CENP-ACnp1 chromatin is normally assembled on ∼10 kb of central domain DNA within these regional centromeres. We demonstrate that overproduction of S. pombe CENP-ACnp1 bypasses the usual requirement for adjacent heterochromatin in establishing CENP-ACnp1 chromatin, and show that central domain DNA is a preferred substrate for de novo establishment of CENP-ACnp1 chromatin. When multimerised, a 2 kb sub-region can establish CENP-ACnp1 chromatin and form functional centromeres. Randomization of the 2 kb sequence to generate a sequence that maintains AT content and predicted nucleosome positioning is unable to establish CENP-ACnp1 chromatin. These analyses indicate that central domain DNA from fission yeast centromeres contains specific information that promotes CENP-ACnp1 incorporation into chromatin. Numerous transcriptional start sites were detected on the forward and reverse strands within the functional 2 kb sub-region and active promoters were identified. RNAPII is enriched on central domain DNA in wild-type cells, but only low levels of transcripts are detected, consistent with RNAPII stalling during transcription of centromeric DNA. Cells lacking factors involved in restarting transcription-TFIIS and Ubp3-assemble CENP-ACnp1 on central domain DNA when CENP-ACnp1 is at wild-type levels, suggesting that persistent stalling of RNAPII on centromere DNA triggers chromatin remodelling events that deposit CENP-ACnp1. Thus, sequence-encoded features of centromeric DNA create an environment of pervasive low quality RNAPII transcription that is an important determinant of CENP-ACnp1 assembly. These observations emphasise roles for both genetic and epigenetic processes in centromere establishment
    corecore