763 research outputs found
Photon assisted tunneling in pairs of silicon donors
Shallow donors in silicon are favorable candidates for the implementation of solid-state quantum computer architectures because of the promising combination of atomiclike coherence properties and scalability from the semiconductor manufacturing industry. Quantum processing schemes require (among other things) controlled information transfer for readout. Here we demonstrate controlled electron tunneling at 10 K from P to Sb impurities and vice versa with the assistance of resonant terahertz photons
Ultrahigh field electron cyclotron resonance absorption in InMnAs films
We have carried out an ultrahigh field cyclotron resonance study of -type
InMnAs films, with Mn composition ranging from 0 to 12%, grown
on GaAs by low temperature molecular beam epitaxy. We observe that the electron
cyclotron resonance peak shifts to lower field with increasing . A detailed
comparison of experimental results with calculations based on a modified
Pidgeon-Brown model allows us to estimate the {\em s-d} and {\em p-d} exchange
coupling constants, and , for this important III-V dilute
magnetic semiconductor system.Comment: 4 pages, 4 figure
Governance traps in climate change politics: re-framing the debate in terms of responsibilities and rights
There is a strong sense of malaise surrounding climate politics today. This has been created at least in part by factors such as the chasm between the scale of action required and the adequacy of current political commitments, stalemate in global negotiations, the low price of carbon, and a growing sense of indifference among the publics of some developed countries about the threat posed by climate change. Within the policy community these issues are generally treated as different problems each to be overcome on their own terms. Yet, we argue, suggested solutions to these problems hold much in common—namely a focus on identifying agency, whether the capacity of institutions to act or the behavior of individuals. What is often missing from such accounts of climate politics is a recognition that the problems of how agency is attributed, what we might term governance traps, are structural in nature. Governing climate change therefore requires that we study the conditions through which these challenges arise and which in turn serve to frame agency in particular ways. We suggest that examining the ways in which notions of responsibilities and rights are currently being framed within climate politics provides one way into these dynamics. This opens up the critical questions that need to be addressed ahead of the critical Conference of the Parties meeting in Paris in November 2015
The role of endotoxin/lipopolysaccharide in surgically induced tumour growth in a murine model of metastatic disease
Surgical removal of a primary tumour is often followed by rapid growth of previously dormant metastases. Endotoxin or lipopolysaccharide, a cell wall constituent of Gram-negative bacteria, is ubiquitously present in air and may be introduced during surgery. BALB/c mice received a tail vein injection of 105 4T1 mouse mammary carcinoma cells. Two weeks later, animals were subjected to surgical trauma or an intraperitoneal injection of endotoxin (10 μg per animal). Five days later, animals which underwent open surgery, laparoscopy with air sufflation or received an endotoxin injection displayed increased lung metastasis compared to anaesthetic controls. These increases in metastatic tumour growth were reflected in increased tumour cell proliferation and decreased apoptosis within lung metastases. Circulating levels of the angiogenic cytokine, vascular endothelial growth factor (VEGF), were also elevated in these groups and correlated with increased plasma levels of endotoxin. Endotoxin treatment for 18 h (>10 ng ml–1) directly up-regulated VEGF production by the 4T1 tumour cells in vitro. Metastatic tumour growth in mice undergoing carbon dioxide laparoscopy, where air is excluded, was similar to anaesthetic controls. These data indicate that endotoxin introduced during surgery is associated with the enhanced growth of metastases following surgical trauma, by altering the critical balances governing cellular growth and angiogenesis. © 1999 Cancer Research Campaig
Temperature dependence of the electron spin g factor in GaAs
The temperature dependence of the electron spin factor in GaAs is
investigated experimentally and theoretically. Experimentally, the factor
was measured using time-resolved Faraday rotation due to Larmor precession of
electron spins in the temperature range between 4.5 K and 190 K. The experiment
shows an almost linear increase of the value with the temperature. This
result is in good agreement with other measurements based on photoluminescence
quantum beats and time-resolved Kerr rotation up to room temperature. The
experimental data are described theoretically taking into account a diminishing
fundamental energy gap in GaAs due to lattice thermal dilatation and
nonparabolicity of the conduction band calculated using a five-level kp model.
At higher temperatures electrons populate higher Landau levels and the average
factor is obtained from a summation over many levels. A very good
description of the experimental data is obtained indicating that the observed
increase of the spin factor with the temperature is predominantly due to
band's nonparabolicity.Comment: 6 pages 4 figure
Recommended from our members
Si:P as a laboratory analogue for hydrogen on high magnetic field white dwarf stars
Laboratory spectroscopy of atomic hydrogen in a magnetic flux density of 10 5 T (1 gigagauss), the maximum observed on high-field magnetic white dwarfs, is impossible because practically available fields are about a thousand times less. In this regime, the cyclotron and binding energies become equal. Here we demonstrate Lyman series spectra for phosphorus impurities in silicon up to the equivalent field, which is scaled to 32.8 T by the effective mass and dielectric constant. The spectra reproduce the high-field theory for free hydrogen, with quadratic Zeeman splitting and strong mixing of spherical harmonics. They show the way for experiments on He and H 2 analogues, and for investigation of He 2, a bound molecule predicted under extreme field conditions
Effects of drought on avian community structure
Droughts are expected to become more frequent under global climate change. Avifauna depend on precipitation for hydration, cover, and food. While there are indications that avian communities respond negatively to drought, little is known about the response of birds with differing functional and behavioral traits, what time periods and indicators of drought are most relevant, or how response varies geographically at broad spatial scales. Our goals were thus to determine (1) how avian abundance and species richness are related to drought, (2) whether community variations are more related to vegetation vigor or precipitation deviations and at what time periods relationships were strongest, (3) how response varies among avian guilds, and (4) how response varies among ecoregions with different precipitation regimes. Using mixed effect models and 1989–2005 North American Breeding Bird Survey data over the central United States, we examined the response to 10 precipitation- and greenness based metrics by abundance and species richness of the avian community overall, and of four behavioral guilds. Drought was associated with the most negative impacts on avifauna in the semiarid Great Plains, while positive responses were observed in montane areas. Our models predict that in the plains, Neotropical migrants respond the most negatively to extreme drought, decreasing by 13.2% and 6.0% in abundance and richness, while permanent resident abundance and richness increase by 11.5% and 3.6%, respectively in montane areas. In most cases, response of abundance was greater than richness and models based on precipitation metrics spanning 32-week time periods were more supported than those covering shorter time periods and those based on greenness. While drought is but one of myriad environmental variations birds encounter, our results indicate that drought is capable of imposing sizable shifts in abundance, richness, and composition on avian communities, an important implication of a more climatically variable future
Combined effects of heat waves and droughts on avian communities across the conterminous United States
Increasing surface temperatures and climatic variability associated with global climate change are expected to produce more frequent and intense heat waves and droughts in many parts of the world. Our goal was to elucidate the fundamental, but poorly understood, effects of these extreme weather events on avian communities across the conterminous United States. Specifically, we explored: (1) the effects of timing and duration of heat and drought events, (2) the effects of jointly occurring drought and heat waves relative to these events occurring in isolation, and (3) how effects vary among functional groups related to nest location and migratory habit, and among ecoregions with differing precipitation and temperature regimes. Using data from remote sensing, meteorological stations, and the North American Breeding Bird Survey, we used mixed effects models to quantify responses of overall and functional group abundance to heat waves and droughts (occurring alone or in concert) at two key periods in the annual cycle of birds: breeding and post-fledging. We also compared responses among species with different migratory and nesting characteristics, and among 17 ecoregions of the conterminous United States. We found large changes in avian abundances related to 100-year extreme weather events occurring in both breeding and post-fledging periods, but little support for an interaction among time periods. We also found that jointly-, rather than individually-occurring heat waves and droughts were both more common and more predictive of abundance changes. Declining abundance was the only significant response to post-fledging events, while responses to breeding period events were larger but could be positive or negative. Negative responses were especially frequent in the western U.S., and among ground-nesting birds and Neotropical migrants, with the largest single-season declines (36%) occurring among ground-nesting birds in the desert Southwest. These results indicate the importance of functional traits, timing, and geography in determining avian responses to weather extremes. Because dispersal to other regions appears to be an important avian response, it may be essential to maintain habitat refugia in a more climatically variable future
- …