34 research outputs found

    Second-generation nitazoxanide derivatives: thiazolides are effective inhibitors of the influenza A virus

    Get PDF
    Aim: The only small molecule drugs currently available for treatment of influenza A virus (IAV) are M2 ion channel blockers and sialidase inhibitors. The prototype thiazolide, nitazoxanide, has successfully completed Phase III clinical trials against acute uncomplicated influenza. Results: We report the activity of seventeen thiazolide analogs against A/PuertoRico/8/1934(H1N1), a laboratory-adapted strain of the H1N1 subtype of IAV, in a cell culture-based assay. A total of eight analogs showed IC50s in the range of 0.14–5.0 μM. Additionally a quantitative structure–property relationship study showed high correlation between experimental and predicted activity based on a molecular descriptor set. Conclusion: A range of thiazolides show useful activity against an H1N1 strain of IAV. Further evaluation of these molecules as potential new small molecule therapies is justified

    Molecular Mechanism of Action of Antimalarial Benzoisothiazolones: Species-Selective Inhibitors of the Plasmodium spp. MEP Pathway enzyme, IspD

    Get PDF
    The methylerythritol phosphate (MEP) pathway is an essential metabolic pathway found in malaria parasites, but absent in mammals, making it a highly attractive target for the discovery of novel and selective antimalarial therapies. Using high-throughput screening, we have identified 2-phenyl benzo[d]isothiazol-3(2H)-ones as species-selective inhibitors of Plasmodium spp. 2-C-methyl-D-erythritol-4-phosphate cytidyltransferase (IspD), the third catalytic enzyme of the MEP pathway. 2-Phenyl benzo[d]isothiazol-3(2H)-ones display nanomolar inhibitory activity against P. falciparum and P. vivax IspD and prevent the growth of P. falciparum in culture, with EC50 values below 400 nM. In silico modeling, along with enzymatic, genetic and crystallographic studies, have established a mechanism-of-action involving initial non-covalent recognition of inhibitors at the IspD binding site, followed by disulfide bond formation through attack of an active site cysteine residue on the benzo[d]isothiazol-3(2H)-one core. The species-selective inhibitory activity of these small molecules against Plasmodium spp. IspD and cultured parasites suggests they have potential as lead compounds in the pursuit of novel drugs to treat malaria

    α-Methyl-α-phenylsuccinimide ameliorates neurodegeneration in a C. elegans model of TDP-43 proteinopathy

    Get PDF
    The antiepileptic drug ethosuximide has recently been shown to be neuroprotective in various Caenorhabditis elegans and rodent neurodegeneration models. It is therefore a promising repurposing candidate for the treatment of multiple neurodegenerative diseases. However, high concentrations of the drug are required for its protective effects in animal models, which may impact on its translational potential and impede the identification of its molecular mechanism of action. Therefore, we set out to develop more potent neuroprotective lead compounds based on ethosuximide as a starting scaffold. Chemoinformatic approaches were used to identify compounds with structural similarity to ethosuximide and to prioritise these based on good predicated blood-brain barrier permeability and C. elegans bioaccumulation properties. Selected compounds were initially screened for anti-convulsant activity in a C. elegans pentylenetetrazol-induced seizure assay, as a rapid primary readout of bioactivity; and then assessed for neuroprotective properties in a C. elegans TDP-43 proteinopathy model based on pan-neuronal expression of human A315T mutant TDP-43. The most potent compound screened, α-methyl-α-phenylsuccinimide (MPS), ameliorated the locomotion defects and extended the shortened lifespan of TDP-43 mutant worms. MPS also directly protected against neurodegeneration by reducing the number of neuronal breaks and cell body losses in GFP-labelled GABAergic motor neurons. Importantly, optimal neuroprotection was exhibited by external application of 50 μM MPS, compared to 8 mM for ethosuximide. This greater potency of MPS was not due to bioaccumulation to higher internal levels within the worm, based on 1H-nuclear magnetic resonance analysis. Like ethosuximide, the activity of MPS was abolished by mutation of the evolutionarily conserved FOXO transcription factor, daf-16, suggesting that both compounds act via the same neuroprotective pathway(s). In conclusion, we have revealed a novel neuroprotective activity of MPS that is >100-fold more potent than ethosuximide. This increased potency will facilitate future biochemical studies to identify the direct molecular target(s) of both compounds, as we have shown here that they share a common downstream DAF-16-dependent mechanism of action. Furthermore, MPS is the active metabolite of another approved antiepileptic drug, methsuximide. Therefore, methsuximide may have repurposing potential for treatment of TDP-43 proteinopathies and possibly other human neurodegenerative diseases

    Identification, Design and Biological Evaluation of Heterocyclic Quinolones Targeting Plasmodium falciparum Type II NADH:Quinone Oxidoreductase (PfNDH2)

    Get PDF
    Following a program undertaken to identify hit compounds against NADH:ubiquinone oxidoreductase (PfNDH2), a novel enzyme target within the malaria parasite Plasmodium falciparum, hit to lead optimization led to identification of CK-2-68, a molecule suitable for further development. In order to reduce ClogP and improve solubility of CK-2-68 incorporation of a variety of heterocycles, within the side chain of the quinolone core, was carried out, and this approach led to a lead compound SL-2-25 (8b). 8b has IC(50)s in the nanomolar range versus both the enzyme and whole cell P. falciparum (IC(50) = 15 nM PfNDH2; IC(50) = 54 nM (3D7 strain of P. falciparum) with notable oral activity of ED(50)/ED(90) of 1.87/4.72 mg/kg versus Plasmodium berghei (NS Strain) in a murine model of malaria when formulated as a phosphate salt. Analogues in this series also demonstrate nanomolar activity against the bc(1) complex of P. falciparum providing the potential added benefit of a dual mechanism of action. The potent oral activity of 2-pyridyl quinolones underlines the potential of this template for further lead optimization studies

    Identification, Design and Biological Evaluation of Bisaryl Quinolones Targeting Plasmodium falciparum Type II NADH:Quinone Oxidoreductase (PfNDH2)

    Get PDF
    A program was undertaken to identify hit compounds against NADH:ubiquinone oxidoreductase (PfNDH2), a dehydrogenase of the mitochondrial electron transport chain of the malaria parasite Plasmodium falciparum. PfNDH2 has only one known inhibitor, hydroxy-2-dodecyl-4-(1H)-quinolone (HDQ), and this was used along with a range of chemoinformatics methods in the rational selection of 17 000 compounds for high-throughput screening. Twelve distinct chemotypes were identified and briefly examined leading to the selection of the quinolone core as the key target for structure-activity relationship (SAR) development. Extensive structural exploration led to the selection of 2-bisaryl 3-methyl quinolones as a series for further biological evaluation. The lead compound within this series 7-chloro-3-methyl-2-(4-(4-(trifluoromethoxy)benzyl)phenyl)quinolin-4(1H)-one (CK-2-68) has antimalarial activity against the 3D7 strain of P. falciparum of 36 nM, is selective for PfNDH2 over other respiratory enzymes (inhibitory IC(50) against PfNDH2 of 16 nM), and demonstrates low cytotoxicity and high metabolic stability in the presence of human liver microsomes. This lead compound and its phosphate pro-drug have potent in vivo antimalarial activity after oral administration, consistent with the target product profile of a drug for the treatment of uncomplicated malaria. Other quinolones presented (e.g., 6d, 6f, 14e) have the capacity to inhibit both PfNDH2 and P. falciparum cytochrome bc(1), and studies to determine the potential advantage of this dual-targeting effect are in progress

    Direct Catalytic Asymmetric Enolexo Aldolizations

    No full text
    32 years after the first, and still the only, catalytic asymmetric intramolecular aldol reaction was published in this journal, the proline‐catalyzed Hajos–Parrish–Eder–Sauer–Wiechert reaction is extended for the first time to catalytic asymmetric enolexo aldolizations. The process provides substituted cyclohexanes in excellent diastereo‐ and enantioselectivities. For example, heptanedial is converted into the corresponding cyclic anti‐configured aldol in 99 % ee (see scheme)

    New mechanistic studies on the proline-catalyzed aldol reaction

    No full text
    The mechanism of the proline-catalyzed aldol reaction has stimulated considerable debate, and despite limited experimental data, at least five different mechanisms have been proposed. Complementary to recent theoretical studies we have initiated an experimental program with the goal of clarifying some of the basic mechanistic questions concerning the proline-catalyzed aldol reaction. Here we summarize our discoveries in this area and provide further evidence for the involvement of enamine intermediates

    Targeting the Ubiquinol-Reduction (Qi) Site of the Mitochondrial Cytochrome bc1 Complex for the Development of Next Generation Quinolone Antimalarials

    Get PDF
    Antimalarials targeting the ubiquinol-oxidation (Qo) site of the Plasmodium falciparum bc1 complex, such as atovaquone, have become less effective due to the rapid emergence of resistance linked to point mutations in the Qo site. Recent findings showed a series of 2-aryl quinolones mediate inhibitions of this complex by binding to the ubiquinone-reduction (Qi) site, which offers a potential advantage in circumventing drug resistance. Since it is essential to understand how 2-aryl quinolone lead compounds bind within the Qi site, here we describe the co-crystallization and structure elucidation of the bovine cytochrome bc1 complex with three different antimalarial 4(1H)-quinolone sub-types, including two 2-aryl quinolone derivatives and a 3-aryl quinolone analogue for comparison. Currently, no structural information is available for Plasmodial cytochrome bc1. Our crystallographic studies have enabled comparison of an in-silico homology docking model of P. falciparum with the mammalian’s equivalent, enabling an examination of how binding compares for the 2- versus 3-aryl analogues. Based on crystallographic and computational modeling, key differences in human and P. falciparum Qi sites have been mapped that provide new insights that can be exploited for the development of next-generation antimalarials with greater selective inhibitory activity against the parasite bc1 with improved antimalarial properties

    Enantioselective direct aldol reactions catalyzed by l-prolinamide derivatives

    No full text
    l-Prolinamides 2, prepared from l-proline and simple aliphatic and aromatic amines, have been found to be active catalysts for the direct aldol reaction of 4-nitrobenzaldehyde with neat acetone at room temperature. They give moderate enantioselectivities of up to 46% enantiomeric excess (ee). The enantioselectivity increases as the amide N—H becomes a better hydrogen bond donor. l-Prolinamides 3, derived from the reaction of l-proline with α,β-hydroxyamines such that there is a terminal hydroxyl group, show more efficient catalysis and higher enantioselectivities. In particular, catalyst 3h, prepared from l-proline and (1S,2S)-diphenyl-2-aminoethanol, exhibits high enantioselectivities of up to 93% ee for aromatic aldehydes and up to >99% ee for aliphatic aldehydes under –25°C. Model reactions of benzaldehyde with three enamines derived from the condensation of prolinamides with acetone have been studied by quantum mechanics calculations. The calculations reveal that the amide N—H and the terminal hydroxyl groups form hydrogen bonds with the benzaldehyde substrate. These hydrogen bonds reduce the activation energy and cause high enantioselectivity. Our results suggest a new strategy in the design of new organic catalysts for direct asymmetric aldol reactions and related transformations
    corecore