39 research outputs found

    A new assemblage of ray-finned fishes (Teleostei) from the Lower Oligocene "Schistes à Meletta” from the Glières plateau, Bornes Massif, eastern France

    Get PDF
    A recently discovered fish assemblage from the "Schistes à Meletta” facies (Lower Oligocene) of the Glières Plateau, Bornes Massif, Haute-Savoie, eastern France is described. The assemblage, comprising specimens ranging from fully-articulated skeletons to isolated scattered ossifications, is composed of Anenchelum cf. glarisianum, Pristigenys sp., Fistularia sp., Caranx cf. glarisianus alongside indeterminate teleosts. This new assemblage greatly increases the fish diversity previously known from the "Schistes à Meletta” of this area. The fauna shows biogeographic affinities with assemblages from the Peritethys domain, in particular from the Helvetic molassic basin and from the Paratethys. The genera identified at the Glières locality are represented today by species living in tropical nearshore environments together with species from the open sea. A possible explanation is that the environment of deposition was rather deep, and that shallow-water fishes were brought in by turbidity current

    The Cretaceous of the Swiss Jura Mountains: an improved lithostratigraphic scheme

    Get PDF
    In the course of the HARMOS project of the Swiss Geological Survey, the lithostratigraphic subdivisions of the Cretaceous sedimentary rocks outcropping in the Swiss Jura Mountains were revisited. New formation names are proposed where only inadequate facies terms existed so far. As in some cases outcrop conditions in the Swiss Jura do not allow for logging complete sections to characterise the formations, type localities in neighbouring France have been chosen. The following formations (Fm.) are defined to describe the Cretaceous lithological units (from bottom to top): Goldberg Fm., Pierre-Châtel Fm., Vions Fm., Chambotte Fm., Vuache Fm., Grand Essert Fm., Gorges de l’Orbe Fm., Vallorbe Fm., Perte du Rhône Fm., Narlay Fm. Dating of the formations is based on biostratigraphy (ammonites, echinids, dasycladalean algae, foraminifera, calpionellids, dinocysts, nannofossils). The fossils indicate Berriasian through to Coniacian ages. The lithostratigraphic units describe the general evolution from a shallow, peritidal platform to deeper-water shelf environments, then the installation of a carbonate platform, and finally the drowning of this platform followed by the predominance of pelagic conditions. The common lateral and vertical changes in facies and sedimentation rates as well as numerous hiatuses within the formations testify to a complex interplay of tectonics, climate, and sea level that controlled the Swiss Jura realm during the Cretaceous

    Glaucoceras gen. nov., a small uncoiled ammonoid from the Tethyan late Hauterivian (Early Cretaceous) : evolutionary implications at the dawn of the diversification of heteromorphic lineages

    Get PDF
    The poorly-known species Baculites Renevieri Ooster, 1860 is revised using the type material from Switzerland and new conspecific specimens collected in deposits from Mallorca and the Betic Cordillera (Western Mediterranean), listing all the previous mentions of the species. The uniqueness of its ornamentation pattern and shell shape compared to other coeval ammonoid faunas demands for the description of Glaucoceras gen. nov. to contain this species. In addition, a thorough comparison of Glaucoceras renevieri to other morphologically reminiscent genera or species is provided. This new set of data allows to improve the knowledge of one of the many phylogenetic lines of heteromorphic ammonites that diversified over the latest Hauterivian in the Mediterranean Province, also providing hints about the timing of those radiation events. This aspect is preliminary explored using data on other coeval heteromorphic ammonoid groups from the literature and new finds, concluding that there occurred two main radiation events of heteromorphic ammonites at the latest Hauterivian, most likely related to environmentally stressful episodes, specifically, transgressive events

    La stratigraphie isotopique du Strontium est-elle une méthode fiable pour dater les plates-formes carbonatées à la transition du Barrémien à l'Aptien ? Révision de cas d'études en Téthys occidentale.

    Get PDF
    Strontium-isotope measurements on Lower Cretaceous marine rocks derive from belemnite material sampled in ammonite-constrained basinal successions. A group of values with a narrow range across the Barremian/Aptian boundary does not allow the separation of the uppermost Barremian (Martelites sarasini ammonite zone) from the lower Aptian pro parte (Deshayesites oglanlensis-D. forbesi ammonite zones). Growing numbers of studies applied Sr-Isotope Stratigraphy (SIS) on Barremian-Aptian shallow-marine sequences (Urgonian facies) in order to solve controversial results obtained by using different shallow-water biological time markers. Based on re-examination of case studies, we conclude that Sr-isotope values can neither be used to prove nor to disprove the location of the putative Barremian/Aptian boundary based on biostratigraphy. Pending more data available, SIS should be used with caution for dating ammonite-free carbonate sediments in the corresponding time interval.Les mesures de l'isotope du Strontium dans des roches carbonatées marines du Crétacé inférieur proviennent de restes de bélemnites récoltés dans des séries de bassins datées directement par ammonites. Autour de la limite Barrémien/Aptien, une gamme étroite de valeurs du Strontium ne permet pas de distinguer le Barrémien supérieur (Zone d'ammonite à Martelites sarasini) de l'Aptien inférieur pro parte (zones d'ammonite à Deshayesites oglanlensis et D. forbesi). Pourtant, l’application de la Stratigraphie Isotopique du Strontium (SIS) sur des séquences marines carbonatées barrémo–aptiennes (à faciès urgonien) apparaît dans un nombre croissant d’études, essentiellement afin de résoudre les datations souvent controversées des marqueurs biologiques d’environnements peu profonds. La révision de ces cas d'étude montre que l’utilisation des valeurs de l'isotope du Strontium n’est pas un outil fiable pour prouver ou réfuter la localisation de la limite Barrémien/Aptien telle que déduite par la biostratigraphie. Dans l'attente de données complémentaires, la SIS doit être utilisée avec précaution pour dater des séries carbonatées non datées directement par ammonites dans l'intervalle de temps concerné

    New insights on the Early Cretaceous (Hauterivian–Barremian) Urgonian lithostratigraphic units in the Jura Mountains (France and Switzerland): the Gorges de l'Orbe and the Rocher des Hirondelles formations

    No full text
    Abstract The Hauterivian–Barremian series of the Jura Mountains were measured over more than 60 sections along a 200 km long transect between Aix-les-Bains (Savoie Department, France) and Bienne (Bern Canton, Switzerland), which prompted the need for a revision and improvement of the current lithostratigraphic scheme for this stratigraphic interval. A new formation, the Rocher des Hirondelles Formation, is proposed in replacement of the unsuitable Vallorbe Formation, while the Gorges de l'Orbe Formation is formally described. The Gorges de l'Orbe Formation, equivalent to the well-known “Urgonien jaune” facies, consists of two members, namely Montcherand Member and Bôle Member. The Rocher des Hirondelles Formation, equivalent to the “Urgonien blanc” facies, consists of three members, i.e. Fort de l'Écluse Member, Rivière Member and Vallorbe Member. The marly Rivière and Bôle members appear to present time-equivalent lithostratigraphic units, recording a major sedimentological event affecting contemporarily both formations. This study proposes a new sedimentary model opening a new point of view on the long-living controversies about the age of the Urgonian series from the Jura Mountains. The data point to strong diachronic ages of lithostratigraphic units with a late Hauterivian to early Barremian occurrence of the “Urgonian blanc” facies in the Meridional Jura area versus a latest Barremian age in the Central Jura area, reflecting a general progradation of the Urgonian shallow-water carbonate platform from the present-day Meridional Jura area toward external deeper-water shelf environments of the present-day Central Jura area and Molasse basin

    The Chabert Formation, a newly defined stratigraphic unit of late early Aptian age in the southern Ardèche, SE France

    No full text
    The subsiding Vocontian Basin in SE France was an important depocenter during the late Early Cretaceous. The rims of this basin were occupied by large carbonate photozoan platforms, locally known as ‘’urgonian’’ platforms. During the late early Aptian, open marine heterozoan marls and carbonates accumulated on top of these former platforms, followed later by thick clayey sandy marls. In this succession, sediment accumulation was interrupted by several drowning phases which lead to hiatuses, encompassing up to several ammonite subzones. Such sedimentary successions are particularly well known in the Bas-Vivarais area of the Ardèche department (SE France). These sediments were mapped by the Bureau de Recherches Géologiques et Minières (BRGM) under various names whose definitions are imprecise and do not obey the rules of the stratigraphic nomenclature. Therefore, a compilation and revision of the available litho- and biostratigraphic data of the late early Aptian on the Languedoc platform is necessary to clarify the local stratigraphy. Here a new lithostratigraphic formation (the Chabert Formation) is proposed based both on lithological and sedimentologic criteria as well as ammonite biostratigraphy. In agreement with the nomenclature rules of lithostratigraphy, the type section and locality of the Chabert Formation are proposed for a section outcropping near the Chabert farm (SE Ardèche). This formation consists of heterozoan sediments (marls and crinoidal limestones) spanning the upper Deshayesites forbesi to the upper Dufrenoyia furcata ammonite Zones. The Chabert Formation is subdivided into three members - the Violette, Rocherenard, and Picourel Members, respectively. Above the Chabert Formation, black marls of late Aptian age (uppermost Dufrenoyia furcata Zone and above) are present, which we propose to name as Frayol Formation

    The Perte-du-Rhône Formation, a new Cretaceous (Aptian-Cenomanian) lithostratigraphic unit in the Jura mountains (France and Switzerland)

    No full text
    During the late Early Cretaceous, the Jura domain was occupied by a photozoan carbonate platform, summarised in the Vallorbe Formation. From the earliest Aptian to the Late Cenomanian, open marine heterozoan and detrital marl, carbonate, and sandstone (up to 40 m thick) accumulated on top of the former Urgonian platform, followed during the Late Cretaceous by pelagic chalk and limestone. At the end of the Early Cretaceous, sediment accumulation was interrupted by several emersions and consecutive drowning phases identified in the field by angular discontinuities, iron crusts, and phosphatic conglomerates. Such sedimentary succession is particularly well visible in the present Bellegarde-sur-Valserine Basin of the Ain Department (eastern France). Therefore, in agreement with the Swiss Committee of Stratigraphy, we introduced new lithostratigraphic units to cover the time from the Aptian to the Cenomanian in the Jura mountains based on the type section near the historical outcrop of the Perte-du-Rhône in the Bellegarde Basin. The new Perte-du-Rhône Formation is subdivided in a lower marly unit (Fulie Member), followed by a middle green sandstone unit with phosphatic conglomerates (Mussel Member), which is finally topped by a mica-rich sandstone unit (Poncin Member)

    The Perte-du-Rhône Formation, a new Cretaceous (Aptian-Cenomanian) lithostratigraphic unit in the Jura mountains (France and Switzerland).

    No full text
    20 pagesInternational audienceDuring the late Early Cretaceous, the Jura domain was occupied by a photozoan carbonate platform, summarised in the Vallorbe Formation. From the earliest Aptian to the Late Cenomanian, open marine heterozoan and detrital marl, carbonate, and sandstone (up to 40 m thick) accumulated on top of the former Urgonian platform, followed during the Late Cretaceous by pelagic chalk and limestone. At the end of the Early Cretaceous, sediment accumulation was interrupted by several emersions and consecutive drowning phases identified in the field by angular discontinuities, iron crusts, and phosphatic conglomerates. Such sedimentary succession is particularly well visible in the present Bellegarde-sur-Valserine Basin of the Ain Department (eastern France). Therefore, in agreement with the Swiss Committee of Stratigraphy, we introduced new lithostratigraphic units to cover the time from the Aptian to the Cenomanian in the Jura mountains based on the type section near the historical outcrop of the Perte-du-Rhône in the Bellegarde Basin. The new Perte-du-Rhône Formation is subdivided in a lower marly unit (Fulie Member), followed by a middle green sandstone unit with phosphatic conglomerates (Mussel Member), which is finally topped by a mica-rich sandstone unit (Poncin Member)

    Record of a dense succession of drowning phases in the Alpstein mountains, northeastern Switzerland: Part II—the Lower Cretaceous Schrattenkalk Formation (late Barremian)

    No full text
    The Schrattenkalk Formation represents a complete succession of Lower Cretaceous shallow-water carbonate platform series cropping out in the Alpstein massif of north-eastern Switzerland. The Schrattenkalk Formation is traditionally divided into two sedimentary units, the “Lower” and the “Upper” Schrattenkalk, separated by the more marly Rawil Member. The “Lower” Schrattenkalk is habitually dated to the late Barremian, while the Rawil Member and the “Upper” Schrattenkalk are dated to the early Aptian. New field observations, however, call the lithostratigraphic dichotomy of the Schrattenkalk into question, as the neritic carbonates are disrupted by several key surfaces associated with karstic episodes and/or transgressive sediments, corresponding to ammonite-rich hemipelagic deposits on the distal shelf. A large number of ammonites were collected in the Drusberg Member as well as rare ammonites from the Schrattenkalk Formation. These ammonites as well as the neritic macrofauna from the Schrattenkalk Formation allow a precise dating of the onset of the Schrattenkalk Formation across the Alpstein massif and its successive phases of progradation. Three successive carbonate bodies and a fourth sedimentary intermediate rock body at the top of the Schrattenkalk platform are defined, based on new biostratigraphic data and updated interpretations of the sequence stratigraphy and geochemical data. The data shows a progressive onset of the Schrattenkalk carbonate platform along the studied transect, following a SE progradation over time. The oldest deposits refer to the upper Barremian T. vandenheckii Zone and the youngest carbonates to the uppermost Barremian M. sarasini Subzone. The new dating of the discontinuity surfaces and key-beds highlight three successive flooding events. The first drowning phase, which correlates with the "Sartousiana" event, dates from the middle late Barremian (upper T. vandenheckii—lower G. sartousiana Zone). The second phase, represented by the Rawil Member, is an incipient drowning, which seems to coincide with the latest Barremian Taxy event (usually reported to the I. giraudi and lowermost M. sarasini zones) according to rare ammonite discoveries. The final demise of the Schrattenkalk platform, situated close to the Barremian-Aptian boundary, is related to an exposure and consecutive drowning event
    corecore