565 research outputs found

    Atomic transition frequencies, isotope shifts, and sensitivity to variation of the fine structure constant for studies of quasar absorption spectra

    Full text link
    Theories unifying gravity with other interactions suggest spatial and temporal variation of fundamental "constants" in the Universe. A change in the fine structure constant, alpha, could be detected via shifts in the frequencies of atomic transitions in quasar absorption systems. Recent studies using 140 absorption systems from the Keck telescope and 153 from the Very Large Telescope, suggest that alpha varies spatially. That is, in one direction on the sky alpha seems to have been smaller at the time of absorption, while in the opposite direction it seems to have been larger. To continue this study we need accurate laboratory measurements of atomic transition frequencies. The aim of this paper is to provide a compilation of transitions of importance to the search for alpha variation. They are E1 transitions to the ground state in several different atoms and ions, with wavelengths ranging from around 900 - 6000 A, and require an accuracy of better than 10^{-4} A. We discuss isotope shift measurements that are needed in order to resolve systematic effects in the study. The coefficients of sensitivity to alpha-variation (q) are also presented.Comment: Includes updated version of the "alpha line" lis

    EXPERIMENTALLY MEASURED RADIATIVE LIFETIMES AND OSCILLATOR STRENGTHS IN NEUTRAL VANADIUM

    No full text
    We report a new study of the V i atom using a combination of time-resolved laser-induced fluorescence and Fourier transform spectroscopy that contains newly measured radiative lifetimes for 25 levels between 24,648 cm−1 and 37,518 cm−1 and oscillator strengths for 208 lines between 3040 and 20000 Å from 39 upper energy levels. Thirteen of these oscillator strengths have not been reported previously. This work was conducted independently of the recent studies of neutral vanadium lifetimes and oscillator strengths carried out by Den Hartog et al. and Lawler et al., and thus serves as a means to verify those measurements. Where our data overlap with their data, we generally find extremely good agreement in both level lifetimes and oscillator strengths. However, we also find evidence that Lawler et al. have systematically underestimated oscillator strengths for lines in the region of 9000 ± 100 Å. We suggest a correction of 0.18 ± 0.03 dex for these values to bring them into agreement with our results and those of Whaling et al. We also report new measurements of hyperfine structure splitting factors for three odd levels of V i lying between 24,700 and 28,400 cm−1

    The laboratory astrophysics spectroscopy programme at Imperial College London

    Get PDF
    Accurate atomic parameters, such as transition probabilities, wavelengths, and energy levels, are indispensable for the analysis of stellar spectra and the obtainment of chemical abundances. However, the quantity and quality of the existing data in many cases lie far from the current needs of astronomers, creating an acute need for laboratory measurements of matching accuracy and completeness to exploit the full potential of the very expensively acquired astrophysical spectra. The Fourier Transform Spectrometer at Imperial College London works in the vacuum ultraviolet-visible region with a resolution of 2,000,000 at 200 nm. We can acquire calibrated spectra of neutral, singly, and doubly ionized species. We collaborate with the National Institute of Standards and Technology (NIST) and the University of Lund to extend our measurements into the infrared region. The aim of this review is to explain the current capabilities of our experiment in an understandable way to bring the astronomy community closer to the field of laboratory astrophysics and encourage further dialogue between our laboratory and all those astronomers who need accurate atomic data. This exchange of ideas will help us to focus our efforts on the most urgently needed data

    Macrophage reprogramming for therapy.

    Get PDF
    Funder: MRC UK Dementia Research Institute ProfessorshipDysfunction of the immune system underlies a plethora of human diseases, requiring the development of immunomodulatory therapeutic intervention. To date, most strategies employed have been focusing on the modification of T lymphocytes, and although remarkable improvement has been obtained, results often fall short of the intended outcome. Recent cutting-edge technologies have highlighted macrophages as potential targets for disease control. Macrophages play central roles in development, homeostasis and host defence, and their dysfunction and dysregulation have been implicated in the onset and pathogenesis of multiple disorders including cancer, neurodegeneration, autoimmunity and metabolic diseases. Recent advancements have led to a greater understanding of macrophage origin, diversity and function, in both health and disease. Over the last few years, a variety of strategies targeting macrophages have been developed and these open new therapeutic opportunities. Here, we review the progress in macrophage reprogramming in various disorders and discuss the potential implications and challenges for macrophage-targeted approaches in human disease

    Fe I Oscillator Strengths for Transitions from High-lying Odd-parity Levels

    No full text
    We report new experimental Fe I oscillator strengths obtained by combining measurements of branching fractions measured with a Fourier Transform spectrometer and time-resolved, laser-induced fluorescence lifetimes. This study covers the spectral region ranging from 213 to 1033 nm. A total of 120 experimental log( ) gf -values coming from 15 odd-parity energy levels are provided, 22 of which have not been reported previously and 63 of which have values with lower uncertainty than the existing data. The radiative lifetimes for 60 upper energy levels are presented, 39 of which have no previous measurements

    General Aspects of Tree Level Gauge Mediation

    Full text link
    Tree level gauge mediation (TGM) may be considered as the simplest way to communicate supersymmetry breaking: through the tree level renormalizable exchange of heavy gauge messengers. We study its general structure, in particular the general form of tree level sfermion masses and of one loop, but enhanced, gaugino masses. This allows us to set up general guidelines for model building and to identify the hypotheses underlying the phenomenological predictions. In the context of models based on the "minimal" gauge group SO(10), we show that only two "pure" embeddings of the MSSM fields are possible using d<120d< 120 representations, each of them leading to specific predictions for the ratios of family universal sfermion masses at the GUT scale, m5ˉ2=2m102m^2_{\bar{5}} = 2 m^2_{10} or m5ˉ2=(3/4)m102m^2_{\bar{5}} = (3/4) m^2_{10} (in SU(5) notation). These ratios are determined by group factors and are peculiar enough to make this scheme testable at the LHC. We also discuss three possible approaches to the μ\mu-problem, one of them distinctive of TGM.Comment: 37 pages, 2 figure

    Lifetime measurements and oscillator strengths in singly ionized scandium and the solar abundance of scandium

    No full text
    The lifetimes of 17 even-parity levels (3d5s, 3d4d, 3d6s and 4p2) in the region 57 743–77 837 cm−1 of singly ionized scandium (Sc II) were measured by two-step timeresolved laser induced fluorescence spectroscopy. Oscillator strengths of 57 lines from these highly excited upper levels were derived using a hollow cathode discharge lamp and a Fourier transform spectrometer. In addition, Hartree–Fock calculations where both the main relativistic and core-polarization effects were taken into account were carried out for both low- and high-excitation levels. There is a good agreement for most of the lines between our calculated branching fractions and the measurements of Lawler & Dakin in the region 9000–45 000 cm−1 for low excitation levels and with our measurements for high excitation levels in the region 23 500–63 100 cm−1. This, in turn, allowed us to combine the calculated branching fractions with the available experimental lifetimes to determine semi-empirical oscillator strengths for a set of 380 E1 transitions in Sc II. These oscillator strengths include the weak lines that were used previously to derive the solar abundance of scandium. The solar abundance of scandium is now estimated to log = 3.04 ± 0.13 using these semi-empirical oscillator strengths to shift the values determined by Scott et al. The new estimated abundance value is in agreement with the meteoritic value (logmet = 3.05 ± 0.02) of Lodders, Palme & Gail

    The Symmetry of Partner Modelling

    Get PDF
    © 2016, International Society of the Learning Sciences, Inc. Collaborative learning has often been associated with the construction of a shared understanding of the situation at hand. The psycholinguistics mechanisms at work while establishing common grounds are the object of scientific controversy. We postulate that collaborative tasks require some level of mutual modelling, i.e. that each partner needs some model of what the other partners know/want/intend at a given time. We use the term “some model” to stress the fact that this model is not necessarily detailed or complete, but that we acquire some representations of the persons we interact with. The question we address is: Does the quality of the partner model depend upon the modeler’s ability to represent his or her partner? Upon the modelee’s ability to make his state clear to the modeler? Or rather, upon the quality of their interactions? We address this question by comparing the respective accuracies of the models built by different team members. We report on 5 experiments on collaborative problem solving or collaborative learning that vary in terms of tasks (how important it is to build an accurate model) and settings (how difficult it is to build an accurate model). In 4 studies, the accuracy of the model that A built about B was correlated with the accuracy of the model that B built about A, which seems to imply that the quality of interactions matters more than individual abilities when building mutual models. However, these findings do not rule out the fact that individual abilities also contribute to the quality of modelling process

    An E2F1-Mediated DNA Damage Response Contributes to the Replication of Human Cytomegalovirus

    Get PDF
    DNA damage resulting from intrinsic or extrinsic sources activates DNA damage responses (DDRs) centered on protein kinase signaling cascades. The usual consequences of inducing DDRs include the activation of cell cycle checkpoints together with repair of the damaged DNA or induction of apoptosis. Many DNA viruses elicit host DDRs during infection and some viruses require the DDR for efficient replication. However, the mechanism by which DDRs are activated by viral infection is poorly understood. Human cytomegalovirus (HCMV) infection induces a DDR centered on the activation of ataxia telangiectasia mutated (ATM) protein kinase. Here we show that HCMV replication is compromised in cells with inactivated or depleted ATM and that ATM is essential for the host DDR early during infection. Likewise, a downstream target of ATM phosphorylation, H2AX, also contributes to viral replication. The ATM-dependent DDR is detected as discrete, nuclear γH2AX foci early in infection and can be activated by IE proteins. By 24 hpi, γH2AX is observed primarily in HCMV DNA replication compartments. We identified a role for the E2F1 transcription factor in mediating this DDR and viral replication. E2F1, but not E2F2 or E2F3, promotes the accumulation of γH2AX during HCMV infection or IE protein expression. Moreover, E2F1 expression, but not the expression of E2F2 or E2F3, is required for efficient HCMV replication. These results reveal a novel role for E2F1 in mediating an ATM-dependent DDR that contributes to viral replication. Given that E2F activity is often deregulated by infection with DNA viruses, these observations raise the possibility that an E2F1-mediated mechanism of DDR activation may be conserved among DNA viruses

    Determination of Baroreflex Sensitivity during the Modified Oxford Maneuver by Trigonometric Regressive Spectral Analysis

    Get PDF
    BACKGROUND: Differences in spontaneous and drug-induced baroreflex sensitivity (BRS) have been attributed to its different operating ranges. The current study attempted to compare BRS estimates during cardiovascular steady-state and pharmacologically stimulation using an innovative algorithm for dynamic determination of baroreflex gain. METHODOLOGY/PRINCIPAL FINDINGS: Forty-five volunteers underwent the modified Oxford maneuver in supine and 60° tilted position with blood pressure and heart rate being continuously recorded. Drug-induced BRS-estimates were calculated from data obtained by bolus injections of nitroprusside and phenylephrine. Spontaneous indices were derived from data obtained during rest (stationary) and under pharmacological stimulation (non-stationary) using the algorithm of trigonometric regressive spectral analysis (TRS). Spontaneous and drug-induced BRS values were significantly correlated and display directionally similar changes under different situations. Using the Bland-Altman method, systematic differences between spontaneous and drug-induced estimates were found and revealed that the discrepancy can be as large as the gain itself. Fixed bias was not evident with ordinary least products regression. The correlation and agreement between the estimates increased significantly when BRS was calculated by TRS in non-stationary mode during the drug injection period. TRS-BRS significantly increased during phenylephrine and decreased under nitroprusside. CONCLUSIONS/SIGNIFICANCE: The TRS analysis provides a reliable, non-invasive assessment of human BRS not only under static steady state conditions, but also during pharmacological perturbation of the cardiovascular system
    corecore