595 research outputs found

    The Influence of Signaling Conspecific and Heterospecific Neighbors on Eavesdropper Pressure

    Get PDF
    The study of tradeoffs between the attraction of mates and the attraction of eavesdropping predators and parasites has generally focused on a single species of prey, signaling in isolation. In nature, however, animals often signal from mixed-species aggregations, where interactions with heterospecific group members may be an important mechanism modulating tradeoffs between sexual and natural selection, and thus driving signal evolution. Although studies have shown that conspecific signalers can influence eavesdropper pressure on mating signals, the effects of signaling heterospecifics on eavesdropper pressure, and on the balance between natural and sexual selection, are likely to be different. Here, we review the role of neighboring signalers in mediating changes in eavesdropper pressure, and present a simple model that explores how selection imposed by eavesdropping enemies varies as a function of a signaling aggregation\u27s species composition, the attractiveness of aggregation members to eavesdroppers, and the eavesdroppers\u27 preferences for different member types. This approach can be used to model mixed-species signaling aggregations, as well as same-species aggregations, including those with non-signaling individuals, such as satellites or females. We discuss the implications of our model for the evolution of signal structure, signaling behavior, mixed-species aggregations, and community dynamics

    Covering California's Kids: The Impact of Healthy Kids on Access, Health Status and Costs

    Get PDF
    Summarizes how the implementation of CHIs designed to improve children's access to primary care helped reduce preventable hospitalizations among lower-income children. Includes policy implications

    A test of cognitive mediation in a 12-month physical activity workplace intervention: does it explain behaviour change in women?

    Get PDF
    Background: Attempts to demonstrate the efficacy of interventions aimed at increasing physical activity (PA) have been mixed. Further, studies are seldom designed in a manner that facilitates the understanding of how or why a treatment is effective or ineffective and PA intervention designs should be guided by a heavier reliance upon behavioral theory. The use of a mediating variable framework offers a systematic methodological approach to testing the role of theory, and could also identify the effectiveness of specific intervention components. The primary purpose of this paper was to test the mediating role that cognitive constructs may have played in regards to the positive effect that a workplace behavioral intervention had on leisure-time PA for women. A subsidiary purpose was to examine the cross-sectional relationships of these cognitive constructs with PA behavior. Methods: The Physical Activity Workplace Study was a randomized controlled trial which compared the effects of stage-matched and standard print materials upon self-reported leisure-time PA, within a workplace sample at 6 and 12-months. In this secondary analysis we examined the mediation effects of 14 psychosocial constructs across 3 major social-cognitive theories which were operationalized for the intervention materials and measured at baseline, 6 and 12-months. We examined change in PA and change in the psychological constructs employing a mediation strategy proposed by Baron and Kenny for: (1) the first 6-months (i.e., initial change), (2) the second 6-months (i.e., delayed change), and (3) the entire 12-months (overall change) of the study on 323 women (n = 213 control/standard materials group; n = 110 stage-matched materials group). Results: Of the 14 constructs and 42 tests (including initial, delayed and overall change) two positive results were identified (i.e., overall change in pros, initial change in experiential powerful intervention approaches processes), with very small effect sizes. However, these mediating results were eliminated after adjusting for the multiple statistical tests. Conclusions: The intervention did not change these mediators in any substantive way, and show a similar pattern to prior research where interventions generally do not result in a change in mediation of behavior change. It is important to report mediation results in randomized controlled trials whether the findings are null or positive. Future studies may wish to focus on more detailed dose-response issues between mediators and behavior, the inclusion of moderators that could affect individual change, or different mediator constructs at higher levels of measurement specificity. Continued work on innovative and more powerful PA intervention approaches are needed

    Th Ages for Metal-Poor Stars

    Full text link
    With a sample of 22 metal-poor stars, we demonstrate that the heavy element abundance pattern (Z > 55) is the same as the r-process contributions to the solar nebula. This bolsters the results of previous studies that there is a universal r-process production pattern. We use the abundance of thorium in five metal-poor stars, along with an estimate of the initial Th abundance based on the abundances of stable r-process elements, to measure their ages. We have four field red giants with errors of 4.2 Gyr in their ages and one M92 giant with an error of 5.6 Gyr, based on considering the sources of observational error only. We obtain an average age of 11.4 Gyr, which depends critically on the assumption of an initial production ratio of Th/Eu of 0.496. If the Universe is 15 Gyr old, then the initial Th/Eu value should be 0.590, in agreement with some theoretical models of the r-process.Comment: 26 pages, to be published in Ap

    Population-Based Estimates of Physical Activity for Adults with Type 2 Diabetes: A Cautionary Tale of Potential Confounding by Weight Status

    Get PDF
    At a population level, the method used to determine those meeting physical activity guidelines has important implications, as estimating “sufficient” physical activity might be confounded by weight status. The objective of this study was to test the difference between three methods in estimating the prevalence of “sufficient activity” among Canadian adults with type 2 diabetes in a large population sample (N = 1614) while considering the role of weight status as a potential confounder. Our results revealed that estimates of physical activity levels vary by BMI categories, depending on the methods examined. Although physical activity levels were lower in the obese, their energy expenditure estimates were not different from those who were overweight or of a healthy weight. The implications of these findings are that biased estimates of physical activity at a population level may result in inappropriate classification of adults with type 2 diabetes as “sufficiently active” and that the inclusion of body weight in estimating physical activity prevalence should be approached with caution

    Collectivization of Vascular Smooth Muscle Cells via TGF-β-Cadherin-11-Dependent Adhesive Switching.

    Get PDF
    OBJECTIVE: Smooth muscle cells (SMCs) in healthy arteries are arranged as a collective. However, in diseased arteries, SMCs commonly exist as individual cells, unconnected to each other. The purpose of this study was to elucidate the events that enable individualized SMCs to enter into a stable and interacting cell collective. APPROACH AND RESULTS: Human SMCs stimulated to undergo programmed collectivization were tracked by time-lapse microscopy. We uncovered a switch in the behavior of contacting SMCs from semiautonomous motility to cell-cell adherence. Central to the cell-adherent phenotype was the formation of uniquely elongated adherens junctions, ≤60 μm in length, which appeared to strap adjacent SMCs to each other. Remarkably, these junctions contained both N-cadherin and cadherin-11. Ground-state depletion super-resolution microscopy revealed that these hybrid assemblies were comprised of 2 parallel nanotracks of each cadherin, separated by 50 nm. Blocking either N-cadherin or cadherin-11 inhibited collectivization. Cell-cell adhesion and adherens junction elongation were associated with reduced transforming growth factor-β signaling, and exogenous transforming growth factor-β1 suppressed junction elongation via the noncanonical p38 pathway. Imaging of fura-2-loaded SMCs revealed that SMC assemblies displayed coordinated calcium oscillations and cell-cell transmission of calcium waves which, together with increased connexin 43-containing junctions, depended on cadherin-11 and N-cadherin function. CONCLUSIONS: SMCs can self-organize, structurally and functionally, via transforming growth factor-β-p38-dependent adhesive switching and a novel adherens junction architecture comprised of hybrid nanotracks of cadherin-11 and N-cadherin. The findings define a mechanism for the assembly of SMCs into networks, a process that may be relevant to the stability and function of blood vessels

    Explorations, Vol. 3, No. 1

    Get PDF
    Cover: Debouche, a thermo-formed acrylic sculpture, by Deborah de Moulpied, Associate Professor of Art at the University of Maine, (from the collection of Barbara Heldt and Gerald Smith, Oxford, England); photograph by Dale and Nedra Van Volkinburg. Articles include: Biotechnology, by Michael R. Gross The Search for Tom Swift or Some Reflections on One of America\u27s Best-Known Cultural Heroes, by David K. Vaughan ENDO-EXO 1 Sculpture in Motion Communication is Not Just Saying Words; It is Creating True Understanding, by Marisue Pickering Maine Outreach: Teaching Success, by Richard A. Hale and James F. Philp Through Cloud and Fog, Hunting the Elusive pH, by Richard Jagels Ocean Basin with a Past A Cryptic History: Breaking the Code Discerning a Future, by Detmar Schnitker We Stand Corrected in Volume II, Number 2, of EXPLORATIONS Dialogue: Letters [to the Editor] Updates from the Dispatch Cas

    A review on the use of Hydroxyapatite-carbonaceous structure composites in bone replacement materials for strengthening purposes

    Get PDF
    Biomedical materials constitute a vast scientific research field, which is devoted to producing medical devices which aid in enhancing human life. In this field, there is an enormous demand for long-lasting implants and bone substitutes that avoid rejection issues whilst providing favourable bioactivity, osteoconductivity and robust mechanical properties. Hydroxyapatite (HAp)-based biomaterials possess a close chemical resemblance to the mineral phase of bone, which give rise to their excellent biocompatibility, so allowing for them to serve the purpose of a bone-substituting and osteoconductive scaffold. The biodegradability of HAp is low (Ksp ≈ 6.62 × 10⁻¹²⁶) as compared to other calcium phosphates materials, however they are known for their ability to develop bone-like apatite coatings on their surface for enhanced bone bonding. Despite its favourable bone regeneration properties, restrictions on the use of pure HAp ceramics in high load-bearing applications exist due to its inherently low mechanical properties (including low strength and fracture toughness, and poor wear resistance). Recent innovations in the field of bio-composites and nanoscience have reignited the investigation of utilising different carbonaceous materials for enhancing the mechanical properties of composites, including HAp-based bio-composites. Researchers have preferred carbonaceous materials with hydroxyapatite due to their inherent biocompatibility and good structural properties. It has been demonstrated that different structures of carbonaceous material can be used to improve the fracture toughness of HAp, as they can easily serve the purpose of being a second phase reinforcement, with the resulting composite still being a biocompatible material. Nanostructured carbonaceous structures, especially those in the form of fibres and sheets, were found to be very effective in increasing the fracture toughness values of HAp. Minor addition of CNTs (3 wt.%) has resulted in a more than 200% increase in fracture toughness of hydroxyapatite-nanorods/CNTs made using spark plasma sintering. This paper presents a current review of the research field of using different carbonaceous materials composited with hydroxyapatite with the intent being to produce high performance biomedically targeted materials

    Continuous photo-oxidation in a vortex reactor: efficient operations using air drawn from the laboratory

    Get PDF
    We report the construction and use of a vortex reactor which uses a rapidly rotating cylinder to generate Taylor vortices for continuous flow thermal and photochemical reactions. The reactor is designed to operate under conditions required for vortex generation. The flow pattern of the vortices has been represented using computational fluid dynamics, and the presence of the vortices can be easily visualized by observing streams of bubbles within the reactor. This approach presents certain advantages for reactions with added gases. For reactions with oxygen, the reactor offers an alternative to traditional setups as it efficiently draws in air from the lab without the need specifically to pressurize with oxygen. The rapid mixing generated by the vortices enables rapid mass transfer between the gas and the liquid phases allowing for a high efficiency dissolution of gases. The reactor has been applied to several photochemical reactions involving singlet oxygen (1O2) including the photo-oxidations of α-terpinene and furfuryl alcohol and the photodeborylation of phenyl boronic acid. The rotation speed of the cylinder proved to be key for reaction efficiency, and in the operation we found that the uptake of air was highest at 4000 rpm. The reactor has also been successfully applied to the synthesis of artemisinin, a potent antimalarial compound; and this three-step synthesis involving a Schenk-ene reaction with 1O2, Hock cleavage with H+, and an oxidative cyclization cascade with triplet oxygen (3O2), from dihydroartemisinic acid was carried out as a single process in the vortex reactor

    Planning, implementation, and first results of the Tropical Composition, Cloud and Climate Coupling Experiment (TC4)

    Get PDF
    The Tropical Composition, Cloud and Climate Coupling Experiment (TC4), was based in Costa Rica and Panama during July and August 2007. The NASA ER-2, DC-8, and WB-57F aircraft flew 26 science flights during TC4. The ER-2 employed 11 instruments as a remote sampling platform and satellite surrogate. The WB-57F used 25 instruments for in situ chemical and microphysical sampling in the tropical tropopause layer (TTL). The DC-8 used 25 instruments to sample boundary layer properties, as well as the radiation, chemistry, and microphysics of the TTL. TC4 also had numerous sonde launches, two ground-based radars, and a ground-based chemical and microphysical sampling site. The major goal of TC4 was to better understand the role that the TTL plays in the Earth's climate and atmospheric chemistry by combining in situ and remotely sensed data from the ground, balloons, and aircraft with data from NASA satellites. Significant progress was made in understanding the microphysical and radiative properties of anvils and thin cirrus. Numerous measurements were made of the humidity and chemistry of the tropical atmosphere from the boundary layer to the lower stratosphere. Insight was also gained into convective transport between the ground and the TTL, and into transport mechanisms across the TTL. New methods were refined and extended to all the NASA aircraft for real-time location relative to meteorological features. The ability to change flight patterns in response to aircraft observations relayed to the ground allowed the three aircraft to target phenomena of interest in an efficient, well-coordinated manner
    corecore