74 research outputs found
Recommended from our members
Unified concepts for understanding and modelling turnover of dissolved organic matter from freshwaters to the ocean: the UniDOM model
The transport of dissolved organic matter (DOM) across the land-ocean-aquatic continuum (LOAC), from freshwater to the ocean, is an important yet poorly understood component of the global carbon budget. Exploring and quantifying this flux is a significant challenge given the complexities of DOM cycling across these contrasting environments. We developed a new model, UniDOM, that unifies concepts, state variables and parameterisations of DOM turnover across the LOAC. Terrigenous DOM is divided into two pools, T1 (strongly-UV-absorbing) and T2 (non- or weakly-UV-absorbing), that exhibit contrasting responses to microbial consumption, photooxidation and flocculation. Data are presented to show that these pools are amenable to routine measurement based on specific UV absorbance (SUVA). In addition, an autochtonous DOM pool is defined to account for aquatic DOM production. A novel aspect of UniDOM is that rates of photooxidation and microbial turnover are parameterised as an inverse function of DOM age. Model results, which indicate that ~5% of the DOM originating in streams may penetrate into the open ocean, are sensitive to this parameterisation, as well as rates assigned to turnover of freshly produced DOM. The predicted contribution of flocculation to DOM turnover is remarkably low, although a mechanistic representation of this process in UniDOM was considered unachievable because of the complexities involved. Our work highlights the need for ongoing research into the mechanistic understanding and rates of photooxidation, microbial consumption and flocculation of DOM across the different environments of the LOAC, along with the development of models based on unified concepts and parameterisations
Challenges in Complex Systems Science
FuturICT foundations are social science, complex systems science, and ICT.
The main concerns and challenges in the science of complex systems in the
context of FuturICT are laid out in this paper with special emphasis on the
Complex Systems route to Social Sciences. This include complex systems having:
many heterogeneous interacting parts; multiple scales; complicated transition
laws; unexpected or unpredicted emergence; sensitive dependence on initial
conditions; path-dependent dynamics; networked hierarchical connectivities;
interaction of autonomous agents; self-organisation; non-equilibrium dynamics;
combinatorial explosion; adaptivity to changing environments; co-evolving
subsystems; ill-defined boundaries; and multilevel dynamics. In this context,
science is seen as the process of abstracting the dynamics of systems from
data. This presents many challenges including: data gathering by large-scale
experiment, participatory sensing and social computation, managing huge
distributed dynamic and heterogeneous databases; moving from data to dynamical
models, going beyond correlations to cause-effect relationships, understanding
the relationship between simple and comprehensive models with appropriate
choices of variables, ensemble modeling and data assimilation, modeling systems
of systems of systems with many levels between micro and macro; and formulating
new approaches to prediction, forecasting, and risk, especially in systems that
can reflect on and change their behaviour in response to predictions, and
systems whose apparently predictable behaviour is disrupted by apparently
unpredictable rare or extreme events. These challenges are part of the FuturICT
agenda
Biomaterial modification of urinary catheters with antimicrobials to give long-term broadspectrum antibiofilm activity
Catheter-associated urinary tract infection (CAUTI) is the commonest hospital-acquired infection, accounting for over 100,000 hospital admissions within the USA annually. Biomaterials and processes intended to reduce the risk of bacterial colonization of the catheters for long-term users have not been successful, mainly because of the need for long duration of activity in flow conditions. Here we report the results of impregnation of urinary catheters with a combination of rifampicin, sparfloxacin and triclosan. In flow experiments, the antimicrobial catheters were able to prevent colonization by common uropathogens Proteus mirabilis, Staphylococcus aureus and Escherichia coli for 7 to 12 weeks in vitro compared with 1–3 days for other, commercially available antimicrobial catheters currently used clinically. Resistance development was minimized by careful choice of antimicrobial combinations. Drug release profiles and distribution in the polymer, and surface analysis were also carried out and the process had no deleterious effect on the mechanical performance of the catheter or its balloon. The antimicrobial catheter therefore offers for the first time a means of reducing infection and its complications in long-term urinary catheter users
Erratum to: Using a discrete choice experiment to value the QLU-C10D: feasibility and sensitivity to presentation format.
© 2017, Springer International Publishing Switzerland. In this article by R. Norman et al., the article by M. T. King et al. is cited as Reference 10, as ‘Submitted’ and ‘Under Review’. However, the Reference 10 should appear with year, volume and page numbers as: King et al., Quality of Life Research (2016); 25(3):625-636. Also an error was found in Table 1 in the reported wording of the Physical Functioning item. The error and correction are described below. The error was limited to Table 1. The survey described in the paper used the correct labelling, and the validity of the analysis is therefore unaffected by the error
Whole-genome sequencing reveals host factors underlying critical COVID-19
Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial
Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome
Co-dependence of the neural and humoral pathways in the mechanism of remote ischemic conditioning
10.1007/s00395-016-0568-zBasic Research in Cardiology11145
Preferential orientation effects in partial melt laser crystallization of silicon
10.1116/1.2998702Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures2662455-2459JVTB
Disruption of a brain transcription factor, NPAS3, is associated with schizophrenia and learning disability
A mother and daughter diagnosed with schizophrenia and schizophrenia co-morbid with mild learning disability, respectively, possess a balanced reciprocal translocation t(9,14)(q34.2;q13). Fluorescence in situ hybridization (FISH) with YAC, BAC, and cosmid probes indicate that the chromosome 14q13 breakpoint disrupts a large gene, NPAS3, encoding a CNS expressed transcription factor of the basic helix-loop-helix PAS (bHLH-PAS) gene family. By analogy with other members of the bHLH-PAS family, the putative truncated protein generated from the disrupted gene locus may have a dominant negative effect. The 14q13 region was previously identified by a linkage study of an inherited neurodegenerative condition, idiopathic basal ganglia calcification (IBGC or Fahr syndrome, OMIM:213600/606656), which is often co-morbid with psychosis. Sequencing of the gene in a third patient diagnosed with IBGC, schizophrenia, and mild learning disability did not reveal functional mutations
- …