327 research outputs found
Chemical Composition and Starch Digestibility of Different Gluten-free Breads
9 pages, 4 tables, 2 figures.-- Published online 19 July 2011.-- The original publication is available at www.springerlink.comThe increasing demand for gluten free products has favoured the design of numerous gluten free bakery products which intended to mimic the quality characteristics of wheat bakery products. The objective of this study was to evaluate the nutritional pattern of gluten free breads representative of the Spanish market for this type of products. The protein, fat and mineral content of the gluten free breads showed great variation, ranging from 0.91g/100g to 15.05g/100g, 2.00g/100g-26.10g/100g and 1.10g/100g to 5.43g/100g, respectively. Gluten free breads had very low contribution to the recommended daily protein intake, with a high contribution to the carbohydrate dietary reference intake. Dietary fiber content also showed great variation varying from 1.30g/100g to 7.20g/100g. In vitro enzymatic hydrolysis of starch showed that the most predominant fraction was the rapidly digestible starch that varied from 75.6 g/100g to 92.5g/100g. Overall, gluten free breads show great variation in the nutrient composition, being starchy based foods low in proteins and high in fat content, with high glycaemic index.Financial support of Association of Coeliac Patients (Madrid, Spain), Spanish Scientific Research Council (CSIC) and the Spanish Ministerio de Ciencia e Innovación (Project AGL2008-00092/ALI). ME Matos would like to thank predoctoral grant by the Council of Scientific and Humanistic Development of University Central of Venezuela (Caracas, Venezuela).Peer reviewe
Protocol for motor and language mapping by navigated TMS in patients and healthy volunteers; workshop report
Navigated transcranial magnetic stimulation (nTMS) is increasingly used for preoperative mapping of motor function, and clinical evidence for its benefit for brain tumor patients is accumulating. In respect to language mapping with repetitive nTMS, literature reports have yielded variable results, and it is currently not routinely performed for presurgical language localization. The aim of this project is to define a common protocol for nTMS motor and language mapping to standardize its neurosurgical application and increase its clinical value. The nTMS workshop group, consisting of highly experienced nTMS users with experience of more than 1500 preoperative nTMS examinations, met in Helsinki in January 2016 for thorough discussions of current evidence and personal experiences with the goal to recommend a standardized protocol for neurosurgical applications. nTMS motor mapping is a reliable and clinically validated tool to identify functional areas belonging to both normal and lesioned primary motor cortex. In contrast, this is less clear for language-eloquent cortical areas identified by nTMS. The user group agreed on a core protocol, which enables comparison of results between centers and has an excellent safety profile. Recommendations for nTMS motor and language mapping protocols and their optimal clinical integration are presented here. At present, the expert panel recommends nTMS motor mapping in routine neurosurgical practice, as it has a sufficient level of evidence supporting its reliability. The panel recommends that nTMS language mapping be used in the framework of clinical studies to continue refinement of its protocol and increase reliability.Peer reviewe
TGF-beta(2)- and H2O2-Induced Biological Changes in Optic Nerve Head Astrocytes Are Reduced by the Antioxidant Alpha-Lipoic Acid
Background/Aims: The goal of the present study was to determine whether transforming growth factor-beta(2) (TGF-beta(2))- and oxidative stress-induced cellular changes in cultured human optic nerve head (ONH) astrocytes could be reduced by pretreatment with the antioxidant alpha-lipoic acid (LA). Methods: Cultured ONH astrocytes were treated with 1.0 ng/ml TGF-beta(2) for 24 h or 200 mu M hydrogen peroxide (H2O2) for 1 h. Lipid peroxidation was measured by a decrease in cis-pari-naric acid fluorescence. Additionally, cells were pretreated with different concentrations of LA before TGF-beta 2 or H2O2 exposure. Expressions of the heat shock protein (Hsp) alpha B-crystallin and Hsp27, the extracellular matrix (ECM) component fibronectin and the ECM-modulating protein connective tissue growth factor (CTGF) were examined with immunohistochemistry and real-time PCR analysis. Results: Both TGF-beta(2) and H2O2 increased lipid peroxidation. Treatment of astrocytes with TGF-beta(2) and H2O2 upregulated the expression of alpha B-crystallin, Hsp27, fibronectin and CTGF. Pretreatment with different concentrations of LA reduced the TGF-beta(2)- and H2O2-stimulated gene expressions. Conclusion: We showed that TGF-beta(2)- and H2O2-stimulated gene expressions could be prevented by pretreatment with the antioxidant LA in cultured human ONH astrocytes. Therefore, it is tempting to speculate that the use of antioxidants could have protective effects in glaucomatous optic neuropathy. Copyright (C) 2012 S. Karger AG, Base
Biodegradable collagen matrix implant vs mitomycin-C as an adjuvant in trabeculectomy: a 24-month, randomized clinical trial
AIM:
To verify the safety and efficacy of Ologen (OLO) implant as adjuvant compared with low-dosage mitomycin-C (MMC) in trabeculectomy.
METHODS:
This was a prospective randomized clinical trial with a 24-month follow-up. Forty glaucoma patients (40 eyes) were assigned to trabeculectomy with MMC or OLO. Primary outcome includes target IOP at ≤21, ≤17, and ≤15 mm Hg; complete (target IOP without medications), and qualified success (target IOP regardless of medications). Secondary outcomes include bleb evaluation, according to Moorfields Bleb Grading System (MBGS); spectral domain optical coherence tomography (SD-OCT) examination; number of glaucoma medications; and frequency of postoperative adjunctive procedures and complications.
RESULTS:
The mean preoperative IOP was 26.5 (±5.2) in MMC and 27.3 (±6.0) in OLO eyes, without statistical significance. One-day postoperatively, the IOP dropped to 5.2 (±3.5) and 9.2 (±5.5) mm Hg, respectively (P=0.009). The IOP reduction was significant at end point in all groups (P=0.01), with a mean IOP of 16.0 (±2.9) and 16.5 (±2.1) mm Hg in MMC and OLO, respectively. The rates and Kaplan-Meier curves did not differ for both complete and qualified success at any target IOP. The bleb height in OLO group was higher than MMC one (P<0.05). SD-OCT analysis of successful/unsuccessful bleb in patients with or without complete success at IOP ≤17 mm Hg indicated a sensitivity of 83% and 73% and a specificity of 75% and 67%, respectively, for MMC and OLO groups. No adverse reaction to OLO was noted.
CONCLUSIONS:
Our results suggest that OLO implant could be a new, safe, and effective alternative to MMC, with similar long-term success rate
Rate-dependent Ca2+ signalling underlying the force-frequency response in rat ventricular myocytes: A coupled electromechanical modeling study
Rate-dependent effects on the Ca2+ sub-system in a rat ventricular myocyte are investigated. Here,
we employ a deterministic mathematical model describing various Ca2+ signalling pathways under
voltage clamp (VC) conditions, to better understand the important role of calmodulin (CaM) in modulating
the key control variables Ca2+/calmodulin-dependent protein kinase-II (CaMKII), calcineurin
(CaN), and cyclic adenosine monophosphate (cAMP) as they affect various intracellular targets. In
particular, we study the frequency dependence of the peak force generated by the myofilaments, the
force-frequency response (FFR). Our cell model incorporates frequency-dependent CaM-mediated spatially heterogenous interaction
of CaMKII and CaN with their principal targets (dihydropyridine (DHPR) and ryanodine (RyR) receptors
and the SERCA pump). It also accounts for the rate-dependent effects of phospholamban
(PLB) on the SERCA pump; the rate-dependent role of cAMP in up-regulation of the L-type Ca2+
channel (ICa;L); and the enhancement in SERCA pump activity via phosphorylation of PLB.Our model reproduces positive peak FFR observed in rat ventricular myocytes during voltage-clamp
studies both in the presence/absence of cAMP mediated -adrenergic stimulation. This study provides
quantitative insight into the rate-dependence of Ca2+-induced Ca2+-release (CICR) by investigating
the frequency-dependence of the trigger current (ICa;L) and RyR-release. It also highlights the relative
role of the sodium-calcium exchanger (NCX) and the SERCA pump at higher frequencies, as well
as the rate-dependence of sarcoplasmic reticulum (SR) Ca2+ content. A rigorous Ca2+ balance
imposed on our investigation of these Ca2+ signalling pathways clarifies their individual roles. Here,
we present a coupled electromechanical study emphasizing the rate-dependence of isometric force
developed and also investigate the temperature-dependence of FFR. Our model provides mechanistic biophysically based explanations for the rate-dependence of CICR,
generating useful and testable hypotheses. Although rat ventricular myocytes exhibit a positive peak
FFR in the presence/absence of beta-adrenergic stimulation, they show a characteristic increase in the
positive slope in FFR due to the presence of Norepinephrine or Isoproterenol. Our study identifies
cAMP-mediated stimulation, and rate-dependent CaMKII-mediated up-regulation of ICa;L as the key
mechanisms underlying the aforementioned positive FFR
Modeling CICR in rat ventricular myocytes: voltage clamp studies
<p>Abstract</p> <p>Background</p> <p>The past thirty-five years have seen an intense search for the molecular mechanisms underlying calcium-induced calcium-release (CICR) in cardiac myocytes, with voltage clamp (VC) studies being the leading tool employed. Several VC protocols including lowering of extracellular calcium to affect <it>Ca</it><sup>2+ </sup>loading of the sarcoplasmic reticulum (SR), and administration of blockers caffeine and thapsigargin have been utilized to probe the phenomena surrounding SR <it>Ca</it><sup>2+ </sup>release. Here, we develop a deterministic mathematical model of a rat ventricular myocyte under VC conditions, to better understand mechanisms underlying the response of an isolated cell to calcium perturbation. Motivation for the study was to pinpoint key control variables influencing CICR and examine the role of CICR in the context of a physiological control system regulating cytosolic <it>Ca</it><sup>2+ </sup>concentration ([<it>Ca</it><sup>2+</sup>]<it><sub>myo</sub></it>).</p> <p>Methods</p> <p>The cell model consists of an electrical-equivalent model for the cell membrane and a fluid-compartment model describing the flux of ionic species between the extracellular and several intracellular compartments (cell cytosol, SR and the dyadic coupling unit (DCU), in which resides the mechanistic basis of CICR). The DCU is described as a controller-actuator mechanism, internally stabilized by negative feedback control of the unit's two diametrically-opposed <it>Ca</it><sup>2+ </sup>channels (trigger-channel and release-channel). It releases <it>Ca</it><sup>2+ </sup>flux into the cyto-plasm and is in turn enclosed within a negative feedback loop involving the SERCA pump, regulating[<it>Ca</it><sup>2+</sup>]<it><sub>myo</sub></it>.</p> <p>Results</p> <p>Our model reproduces measured VC data published by several laboratories, and generates graded <it>Ca</it><sup>2+ </sup>release at high <it>Ca</it><sup>2+ </sup>gain in a homeostatically-controlled environment where [<it>Ca</it><sup>2+</sup>]<it><sub>myo </sub></it>is precisely regulated. We elucidate the importance of the DCU elements in this process, particularly the role of the ryanodine receptor in controlling SR <it>Ca</it><sup>2+ </sup>release, its activation by trigger <it>Ca</it><sup>2+</sup>, and its refractory characteristics mediated by the luminal SR <it>Ca</it><sup>2+ </sup>sensor. Proper functioning of the DCU, sodium-calcium exchangers and SERCA pump are important in achieving negative feedback control and hence <it>Ca</it><sup>2+ </sup>homeostasis.</p> <p>Conclusions</p> <p>We examine the role of the above <it>Ca</it><sup>2+ </sup>regulating mechanisms in handling various types of induced disturbances in <it>Ca</it><sup>2+ </sup>levels by quantifying cellular <it>Ca</it><sup>2+ </sup>balance. Our model provides biophysically-based explanations of phenomena associated with CICR generating useful and testable hypotheses.</p
- …