433 research outputs found

    Magnetic Response of Magnetospirillum Gryphiswaldense

    Get PDF
    In this study we modelled and measured the U-turn trajectories of individual magnetotactic bacteria under the application of rotating magnetic fields, ranging in ampitude from 1 to 12 mT. The model is based on the balance between rotational drag and magnetic torque. For accurate verification of this model, bacteria were observed inside 5 m tall microfluidic channels, so that they remained in focus during the entire trajectory. From the analysis of hundreds of trajectories and accurate measurements of bacteria and magnetosome chain dimensions, we confirmed that the model is correct within measurement error. The resulting average rate of rotation of Magnetospirillum Gryphiswaldense is 0.74 +- 0.03 rad/mTs.Comment: 17 pages, 12 figure

    Planar manipulation of magneto-tactic bacteria using unidirectional magnetic fields

    Get PDF
    We show for the first time that an alternating unidirectional magnetic field generated by a magnetic erase head allows planar manipulation of magneto-tactic bacteria (MTB), and is not restricted to parallel directions only. We used squared-shaped magnetic fields of approximately 4 mT while sweeping from 0.25 to 10 Hz, and found that at frequencies of over 3 Hz the mean orthogonal velocity becomes constant. The erase head offers a significant reduction in size and complexity over conventional manipulators

    Biological Soil Crusts as Modern Analogues for the Archean Continental Biosphere: Insights from Carbon and Nitrogen Isotopes

    Get PDF
    Stable isotope signatures of elements related to life such as carbon and nitrogen can be powerful biomarkers that provide key information on the biological origin of organic remains and their paleoenvironments. Marked advances have been achieved in the last decade in our understanding of the coupled evolution of biological carbon and nitrogen cycling and the chemical evolution of the early Earth thanks, in part, to isotopic signatures preserved in fossilized microbial mats and organic matter of marine origin. However, the geologic record of the early continental biosphere, as well as its evolution and biosignatures, is still poorly constrained. Following a recent report of direct fossil evidence of life on land at 3.22 Ga, we compare here the carbon and nitrogen isotopic signals of this continental Archean biosphere with biosignatures of cyanobacteria biological soil crusts (cyanoBSCs) colonizing modern arid environments. We report the first extended δ13C and δ15N data set from modern cyanoBSCs and show that these modern communities harbor specific isotopic biosignatures that compare well with continental Archean organic remains. We therefore suggest that cyanoBSCs are likely relevant analogues for the earliest continental ecosystems. As such, they can provide key information on the timing, extent, and possibly mechanism of colonization of the early Earth's emergent landmasses

    Very-High-Energy γ\gamma-Ray Observations of the Blazar 1ES 2344+514 with VERITAS

    Full text link
    We present very-high-energy γ\gamma-ray observations of the BL Lac object 1ES 2344+514 taken by the Very Energetic Radiation Imaging Telescope Array System (VERITAS) between 2007 and 2015. 1ES 2344+514 is detected with a statistical significance above background of 20.8σ20.8\sigma in 47.247.2 hours (livetime) of observations, making this the most comprehensive very-high-energy study of 1ES 2344+514 to date. Using these observations the temporal properties of 1ES 2344+514 are studied on short and long times scales. We fit a constant flux model to nightly- and seasonally-binned light curves and apply a fractional variability test, to determine the stability of the source on different timescales. We reject the constant-flux model for the 2007-2008 and 2014-2015 nightly-binned light curves and for the long-term seasonally-binned light curve at the >3σ> 3\sigma level. The spectra of the time-averaged emission before and after correction for attenuation by the extragalactic background light are obtained. The observed time-averaged spectrum above 200 GeV is satisfactorily fitted (χ2/NDF=7.89/6{\chi^2/NDF = 7.89/6}) by a power-law function with index Γ=2.46±0.06stat±0.20sys\Gamma = 2.46 \pm 0.06_{stat} \pm 0.20_{sys} and extends to at least 8 TeV. The extragalactic-background-light-deabsorbed spectrum is adequately fit (χ2/NDF=6.73/6{\chi^2/NDF = 6.73/6}) by a power-law function with index Γ=2.15±0.06stat±0.20sys\Gamma = 2.15 \pm 0.06_{stat} \pm 0.20_{sys} while an F-test indicates that the power-law with exponential cutoff function provides a marginally-better fit (χ2/NDF\chi^2/NDF = 2.56/52.56 / 5 ) at the 2.1σ\sigma level. The source location is found to be consistent with the published radio location and its spatial extent is consistent with a point source.Comment: 7 pages, 2 figures. Published in Monthly Notices of the Royal Astronomical Societ

    Field-testing solutions for drinking water quality monitoring in low- and middle-income regions and case studies from Latin American, African and Asian countries

    Get PDF
    Funding Information: This study is part of SAFEWATER Devices Translation and Implementation project supported by the Global Challenges Research Fund ( GCRF ) Global Research Translation Awards, UK Research and Innovation ( SAFEWATER Translate, EPSRC Grant Reference EP/T015470/1 ).Peer reviewedPublisher PD

    Ecological succession of a Jurassic shallow-water ichthyosaur fall.

    Get PDF
    After the discovery of whale fall communities in modern oceans, it has been hypothesized that during the Mesozoic the carcasses of marine reptiles created similar habitats supporting long-lived and specialized animal communities. Here, we report a fully documented ichthyosaur fall community, from a Late Jurassic shelf setting, and reconstruct the ecological succession of its micro- and macrofauna. The early 'mobile-scavenger' and 'enrichment-opportunist' stages were not succeeded by a 'sulphophilic stage' characterized by chemosynthetic molluscs, but instead the bones were colonized by microbial mats that attracted echinoids and other mat-grazing invertebrates. Abundant cemented suspension feeders indicate a well-developed 'reef stage' with prolonged exposure and colonization of the bones prior to final burial, unlike in modern whale falls where organisms such as the ubiquitous bone-eating worm Osedax rapidly destroy the skeleton. Shallow-water ichthyosaur falls thus fulfilled similar ecological roles to shallow whale falls, and did not support specialized chemosynthetic communities

    Discovery of very high energy gamma rays from PKS 1424+240 and multiwavelength constraints on its redshift

    Get PDF
    We report the first detection of very-high-energy (VHE) gamma-ray emission above 140 GeV from PKS 1424+240, a BL Lac object with an unknown redshift. The photon spectrum above 140 GeV measured by VERITAS is well described by a power law with a photon index of 3.8 +- 0.5_stat +- 0.3_syst and a flux normalization at 200 GeV of (5.1 +- 0.9_stat +- 0.5_syst) x 10^{-11} TeV^-1 cm^-2 s^-1, where stat and syst denote the statistical and systematical uncertainty, respectively. The VHE flux is steady over the observation period between MJD 54881 and 55003 (2009 February 19 to June 21). Flux variability is also not observed in contemporaneous high energy observations with the Fermi Large Area Telescope (LAT). Contemporaneous X-ray and optical data were also obtained from the Swift XRT and MDM observatory, respectively. The broadband spectral energy distribution (SED) is well described by a one-zone synchrotron self-Compton (SSC) model favoring a redshift of less than 0.1. Using the photon index measured with Fermi in combination with recent extragalactic background light (EBL) absorption models it can be concluded from the VERITAS data that the redshift of PKS 1424+240 is less than 0.66.Comment: accepted for publication, Ap
    corecore