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Abstract 

Stable isotope signatures of elements related to life such as carbon and nitrogen can be powerful biomarkers that 

provide key information on the biological origin of organic remains and their paleoenvironments. Marked advances 

have been achieved in the last decade in our understanding of the coupled evolution of biological carbon and nitrogen 

cycling and the chemical evolution of the early Earth thanks, in part, to isotopic signatures preserved in fossilized 

microbial mats and organic matter of marine origin. However, the geologic record of the early continental biosphere, 

as well as its evolution and biosignatures, is still poorly constrained. Following a recent report of direct fossil evidence 

of life on land at 3.22 Ga, we compare here the carbon and nitrogen isotopic signals of this continental Archean 

biosphere with biosignatures of cyanobacteria biological soil crusts (cyanoBSCs) colonizing modern arid 

environments. We report the first extended d13C and d15N data set from modern cyanoBSCs and show that these 

modern communities harbor specific isotopic biosignatures that compare well with continental Archean organic 

remains. We therefore suggest that cyanoBSCs are likely relevant analogues for the earliest continental ecosystems. 

As such, they can provide key information on the timing, extent, and possibly mechanism of colonization of the early 

Earth’s emergent landmasses.  
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1. Introduction 

 

During the Archean, the absence of an ozone layer resulted in higher short-wavelength irradiance than to- day despite 

the fact that the sun was 30% dimmer (Kasting et al., 1989). Due to these extreme environmental conditions, Berkner 

and Marshall (1965) initially hypothesized that the colonization of Earth’s emergent landmass would have been 

impeded until the formation of an ozone shield. However, later findings showed that sulfur vapor and hydrocarbon 

smog in the primitive ozone-free atmosphere may have strongly attenuated ultraviolet (UV) radiation (Kasting et al., 

1989), and that the Archean landmasses could have been provided sufficient refugia to early photosynthesizers even 

under high UV fluxes (Garcia-Pichel, 1998). From a theo- retical perspective, a continental1 microbial phototrophic 

biosphere could have therefore existed early, before the Great Oxidation Event (Beraldi-Campesi et al., 2009; Lalonde 

and Konhauser, 2015), and have colonized emergent land sur- faces (Thomazo et al., 2018).  

 

 
1Continental referring throughout the text to environments experiencing subaerial exposure and desiccation (e.g., fluvial systems, alluvial fans, 

dryland, and playas) associated with a strictly terrestrial biosphere and excluding fully aquatic ecosystems (e.g., lakes, ponds, and geothermal 
springs). 

 



Today, the strictly microbial terrestrial phototrophic biosphere is dominated by biological soils crusts (BSCs). They 

represent Earth’s largest biofilm, covering 12% of the continents (Rodriguez-Caballero et al., 2018), typically in areas 

where plant growth is restricted. While they are composed of a high diversity of microorganisms, they are primarily 

built by cyanobacteria performing oxygenic pho- tosynthesis (Garcia-Pichel, 2002). 

Robust and direct evidence for ancient fossil BSC is found in the 1.2 Ga mid-Proterozoic Apache Supergroup in the 

Dripping Springs Formation of Arizona (Beraldi- Campesi et al., 2014). Indirect evidence for the presence of an 

Archean phototrophic biosphere is based on sedimento- logical observations of paleosols (3.0–3.2 Ga; Retallack et 

al., 2016) and geochemical arguments suggesting that microorganisms capable of photosynthesis colonized Ar- chean 

continents before the Great Oxidation Event (Lalonde and Konhauser, 2015; Havig and Hamilton, 2019). An early 

time line for land colonization, between 3.05 and 2.78 Ga, is also suggested by ancestral state reconstruction and 

relaxed molecular clock analyses of cyanobacterial diversification (Blank and Sanchez-Baracaldo, 2010; Uyeda et al., 

2016; Garcia-Pichel et al., 2019). 

Two recent pieces of work made significant advances in the early Earth continental biosphere conundrum. Homann 

et al. (2018) showed that siliciclastic sediments of the 3.22 Ga Moodies Group (South Africa) preserved fossil micro- 

bial mats inhabiting continental habitats (i.e., fluvial with periods of terrestrial subaerial exposure and desiccation) 

and that their coupled carbon isotope compositions of or- ganic matter and bulk nitrogen isotope compositions are 

statistically different from strictly marine examples pre- served elsewhere in the Moodies Group (Homann et al., 

2015). In addition, Thomazo et al. (2018) carried out a meta-analysis of the biogeochemical cycling of nitrogen by the 

modern terrestrial phototrophic biosphere and high- lighted that this ecosystem would have been capable of importing 

nitrogen gas from the early atmosphere and ex- porting ammonium and nitrate to the Archean ocean, pre- sumably 

through fluvial networks. The present contribution fills the gap between these two recent studies by addressing the N 

and C isotopic signals of modern cyanobacteria bi- ological soil crusts (cyanoBSCs) to compare their bio- signatures 

with the emerging geochemical continental record of Archean continental life. 

 

2. Materials and Methods 

 

A total of 67 cyanoBSC samples were collected from different desert areas (Supplementary Table S1). They were 

analyzed for their organic carbon and bulk nitrogen isotope compositions at the Biogéosciences laboratory, Universite 

é de Bourgogne, Dijon, France (Supplementary Data). Their maturity level (successional stage) was inferred based on 

visual observations according to the sequence provided by Garcia-Pichel (2002). Only cyanobacteria-dominated BSCs 

were selected for geochemical analyses since moss and lichen biocrusts are not relevant to the early Earth microbial 

environment. Although cyanobacteria are always largely dominating the biomass of early (light) to middle 

successional stage (dark) BSCs (Chilton et al., 2018), we ran a nonparametric Mann–Whitney U test to determine if 

lichen- bearing middle-stage BSCs (n = 15) (Supplementary Table S1) bear different C and N isotope distributions. 

No significant statistical difference was observed in N isotope compositions between early- to middle-stage 

cyanoBSCs and middle-stage lichen-bearing BSCs (SupplementarybSF1 Fig. S1). However, for C isotope 

compositions, measured values are statistically different ( p < 0.01) between these two categories. Lichen-bearing 

BSCs were therefore excluded from our analyses. Early- and middle-stage cyanoBSCs are statistically identical in 

their C and N isotope compositions ( p = 0.37 and 0.39, Supplementary Fig. S2).  

 

3. Results  

 

The isotopic signatures of cyanoBSCs show mean values of -22.8 – 2.3 per mill and 3.4 – 3.5 per mill for the d13Corg 

and d15Nbulk, respectively. With the exception of one study where extreme d15Nbulk values were reported in BSCs 

from Zambia and Botswana (Aranibar et al., 2003), the d13Corg and d15Nbulk data available in the literature are 

consistent with our measurements (Supplementary Fig. S3). The  

 

 

 

 

 

 

 

 

 

 



 

 

 
Fig. 1. Typical ranges of d13C, d15N, and C/N ratio for the main sources of organic matter in continental hydro- 

geological systems (modified after Finlay and Kendall, 2007), compared with ranges for cyanoBSCs. BAC, benthic 

algae and cyanobacteria; cyanoBSCs, cyanobacteria bio- logical soil crusts; PAC, planktonic algae and cyano- 

bacteria; TPDS, terrestrial plant detritus and soils. 

 

 

C/N atomic ratio shows a mean value of 9.9 – 1.3, slightly F1 c above Redfield. Figure 1 compares observed ranges 

of d13C, d15N, and C/N ratio in our analyses of the main sources of organic matter in continental hydrogeological 

systems (Fin- lay and Kendall, 2007), including terrestrial plant detritus and soils (TPDS), macrophytes, benthic algae 

and cyanobacteria (BAC), and planktonic algae and cyanobacteria (PAC). The isotopic and elementary signatures of 

cyanoBSCs define a restricted chemical space, partly overlapping the TPDS, BAC, and macrophyte data. Based on 

these isotopic signals, the BSCs and PAC reservoirs are distinguishable (Fig. 1).  

Figure 2 compares the d13Corg and d15Nbulk signals of the cyanoBSCs measured in this study with the Paleoarchean 

continental and marine organic remains preserved in the 3.22 Ga old Moodies Group, and with the Paleoarchean 

marine organic matter reservoir (after Thomazo et al., 2009). The d13Corg and d15Nbulk signatures of the cya- 

noBSCs and marine Moodies Group are statistically differ- ent ( p = 0.03 and 0.07, respectively). However, the isotopic 

signatures of modern cyanoBSCs are statistically indistin- guishable from the continental Moodies Group ( p = 0.25 

and 0.22 for the d13Corg and d15Nbulk, respectively). Moreover, the Moodies Group continental d13Corg values 

bear this characteristic signature at a regional scale and in different time units (Fig. 2). Paleoarchean marine isotopic 

signatures are consistent with reported data for marine mats from the Moodies Group, and significantly different than 

the cya- noBSCs and the continental mats of the Moodies Group. 

 

 

 



4. Discussion  

 

The isotopic biosignatures of cyanoBSCs are different than the PAC reservoir and exhibit a restricted range when 

compared with the BAC (Fig. 1). In addition to depositional setting information, these new observations can contribute 

to interdisciplinary sets of data to help make an integrated biosignature assessment in the geological record. In this 

way, Fig. 2 thus suggests that cyanoBSCs represent modern analogues of communities that colonized Archean conti- 

nents. This assumption is consistent with studies suggesting that continental colonization by microbial communities 

may have triggered oxidative weathering on continental surfaces before the Great Oxidation Event (Lalonde and 

Konhauser, 2015; Havig and Hamilton, 2019). Early life on land would have also enhanced the delivery of nutrients 

to the oceans such as fixed nitrogen (Thomazo et al., 2018) and would have increased the productivity of Paleoarchean 

shelves and coastal margin environments (Lyons et al., 2014). Cyano- bacterial land-based modern ecosystems may 

therefore hold keys in understanding how Earth’s early terrestrial biogeo- chemical cycles were established and how 

they were linked to biogeochemical cycling in the marine environment.  

 

 

 
 

FIG. 2. Comparison of the d13Corg and d15Nbulk signals of modern analog cyanoBSCs with the Paleoarchean 

continental and marine organic remains of the Moodies Group (data from unit B of the Dycedale Syncline; Homann 

et al., 2018 and MdQ1 unit of the Saddleback Syncline; Gamper et al., 2012) and with the Paleoarchean organic matter 

oceanic reservoir (after Thomazo et al., 2009).  

 

 

Modern examples of cyanoBSCs from desert sandy soils are thus likely close analogues for microbial communities 

that thrived in environments available for the development of an early phototrophic biosphere on Archean continents 

and rocky planetary surfaces (with reduced clays and carbonates), given the aggressive weathering regime postulated 

for the early Earth that was largely dominated by siliciclastic inputs (Bose et al., 2012). The Moodies Group hosts the 

oldest known occurrence of quartz-rich sandstones, locally interbedded with conglomerates, which were deposited in 

alluvial, fluvial, possibly aeolian, deltaic, tidal, and subtidal paleoenvironments (Homann et al., 2015). However, 

given their low preservation potential in the rock record and the multibillion-year geolog- ical history of these 



terrestrial ecosystems, their detection primarily relies on geochemical proxies. As such, indirect evidence based on 

element mobility patterns in several Ar- chean paleosols has been suggested to speak to the presence of an ancient 

terrestrial biosphere where organic ligands chelated metals during weathering (Rye and Holland, 2000). We suggest 

that coupled carbon and nitrogen isotopic signatures of Archean organic remains, associated with their sedimento- 

logical contexts, can provide a direct way to robustly back- track deep-time phototrophic life on land in deep time.  

 

 

5. Conclusions 

 

Using combined C and N isotope biosignatures, we showed here that biological soil crusts represent, among modern 

microbial ecosystems, a credible analogue for one of the oldest archives of continental life on Earth. Moreover, these 

communities, more widespread at the global scale than hot spring and hydrothermal systems, are thus of prime 

importance for untangling mechanisms and consequences of the early Earth land colonization. They also likely contain 

key information for understanding the evolution of global biogeochemical cycles toward their modern states. 
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