29 research outputs found

    One stone, many birds: Recent advances in functional nanogels for cancer nanotheranostics

    Get PDF
    Inspired by the development of nanomedicine and nanotechnology, more and more possibilities in cancer theranostic have been provided in the last few years. Emerging therapeutic modalities like starvation therapy, chemodynamic therapy, and tumor oxygenation have been integrated with diagnosis, giving a plethora of theranostic nanoagents. Among all of them, nanogels (NGs) show superiority benefiting from their unique attributes: high stability, high water-absorption, large specific surface area, mechanical strength, controlled responsiveness, and high encapsulation capacity. There have been a vast number of investigations supporting various NGs combining drug delivery and multiple bioimaging techniques, encompassing photothermal imaging, photoacoustic imaging, fluorescent imaging, ultrasound imaging, magnetic resonance imaging, and computed tomography. This review summarizes recent advances in functional NGs for theranostic nanomedicine and discusses the challenges and future perspectives of this fast-growing field. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > In Vivo Nanodiagnostics and ImagingChina Scholarship Council, Grant/Award Number: 201804910606; Eusko Jaurlaritza, Grant/Award Numbers: KK-2019/00086, KK-2020/00010, PIBA_2020_1_0056; Ikerbasque, Basque Foundation for Science; Marie Sklodowska-Curie Research and Innovation Staff Exchanges (RISE) "IONBIKE", Grant/Award Number: 823989; Ministerio de Economía y Competitividad (MINECO), Grant/Award Number: RTI2018-098951-B-I0

    Lithium Borate Ionic Liquids as Single-Component Electrolytes for Batteries

    Get PDF
    Current electrolytes for lithium batteries are usually composed of at least two chemical compounds, an organic solvent such as a cyclic carbonate and a lithium salt such as LiPF6. Here, the concept of using a single-component electrolyte is demonstrated in lithium batteries based on new lithium borate ionic liquids at room temperature. The design concept of this class of lithium ionic liquids (LiILs) is based on an asymmetrically substituted central tetracoordinate boron atom with oligoethylene glycol groups, fluorinated electron-attracting groups, and one alkane group. The optimized borateLi+ LiILs show a high ionic conductivity value of >10−4 S cm−1 at 25 °C, high lithium transference numbers ( = 0.4 – 0.5) and electrochemical stability (>4 V). Some of the LiILs present high compatibility with lithium-metal electrodes showing stable polarization profiles in platting/stripping tests. The selected LiIL is investigated as single-component electrolytes in lithium-metal battery cells showing discharge capacity values in Li0/LiIL/lithium–iron phosphate and Li0/LiIL/lithium titanate cells of 124 and 75 mAh g−1, respectively, at a C-rate of 0.2 C and 65 °C with low-capacity loss.This work was funded and supported by a Grant for Basque Government through grant IT1309-19, and European Commission's funded Marie Skłodowska–Curie project POLYTE-EID (Project No. 765828) and Spanish MCIN/AEI/PID2020-119026GB-I00. G.G.-G. is grateful to “Secretaría de Educación, Ciencia, Tecnología e Innovación” from Ciudad de México for the postdoctoral fellowship through grant SECTEI/133/2019. G.G.-G. also thanks the PhD. IOSM for being the driving force and constant support

    Multifunctional Ionic Polymers from Deep Eutectic Monomers Based on Polyphenols

    Get PDF
    Herein we report a novel family of deep eutectic monomers and the corresponding polymers, made of (meth)acrylic ammonium salts and a series of biobased polyphenols bearing catechol or pyrogallol motifs. Phenolic chemistry allows modulating molecular interactions by tuning the ionic polymer properties from soft adhesive to tough materials. For instance, pyrogallol and hydrocaffeic acid-derived ionic polymers showed outstanding adhesiveness (>1 MPa), while tannic acid/gallic acid polymers with dense hydrogen bond distribution afforded ultratough elastomers (stretchability ≈1000% and strength ≈3 MPa). Additionally, phenolic polymeric deep eutectic solvents (polyDES) featured metal complexation ability, antibacterial properties, and fast processability by digital light 3D printing.This work was supported by Marie Sklodowska-Curie Research and Innovation Staff Exchanges (RISE) under grant agreement no. 823989 “IONBIKE”. The financial support from CONICET and ANPCyT (PICT 2018-01032) (Argentina) is also gratefully acknowledged

    Natural Deep Eutectic Solvents Based on Choline Chloride and Phenolic Compounds as Efficient Bioadhesives and Corrosion Protectors

    Get PDF
    This work was supported by Marie Sklodowska-Curie Research and Innovation Staff Exchanges (RISE) under Grant Agreement No. 823989 “IONBIKE”. The financial supports received from CONICET and ANPCyT (Argentina) are also gratefully acknowledged. ). Publisher Copyright: © 2022 American Chemical Society. All rights reserved.Natural deep eutectics solvents (NADES), owing to their high solvation capacity and nontoxicity, are actively being sought for many technological applications. Herein, we report a series of novel NADES based on choline chloride and plant-derived polyphenols. Most of the obtained phenolic NADES have a wide liquid range and high thermal stability above 150 °C. Among them, small-sized polyphenols, like pyrogallol, vanillyl alcohol, or gentisic acid, lead to low-viscosity liquids with ionic conductivities in the order of 10-3S cm-1at room temperature. Interestingly, polyphenols possess valuable properties as therapeutic agents, antioxidants, adhesives, or redox-active compounds, among others. Thus, we evaluated the potential of these novel NADES for two applications: bioadhesives and corrosion protection. The mixture of choline chloride-vanillyl alcohol (2:3 mol ratio) and gelatin resulted in a highly adhesive viscoelastic liquid (adhesive stress ≈ 135 kPa), affording shear thinning behavior. Furthermore, choline chloride-tannic acid (20:1) showed an extraordinary ability to coordinate iron ions, reaching excellent corrosion inhibitive efficiencies in mild steel protection.publishersversionpublishe

    Mixed Ionic and Electronic Conducting Eutectogels for 3D-Printable Wearable Sensors and Bioelectrodes

    Get PDF
    Eutectogels are a new class of soft ion conductive materials that are attracting attention as an alternative to conventional hydrogels and costly ionic liquid gels to build wearable sensors and bioelectrodes. Herein, the first example of mixed ionic and electronic conductive eutectogels showing high adhesion, flexibility, nonvolatility, and reversible low-temperature gel transition for 3D printing manufacturing is reporting. The eutectogels consist of choline chloride/glycerol deep eutectic solvent, poly(3,4-ethylenedioxythiophene): lignin sulfonate, and gelatin as the biocompatible polymer matrix. These soft materials are flexible and stretchable, show high ionic and electronic conductivities of 7.3 and 8.7 mS cm−1, respectively, and have high adhesion energy. Due to this unique combination of properties, they could be applied as strain sensors to precisely detect physical movements. Furthermore, these soft mixed ionic electronic conductors possess excellent capacity as conformal electrodes to record epidermal physiological signals, such as electrocardiograms and electromyograms, over a long time.M.L.P. and A.G. contributed equally to this work. This work was supported by Marie Sklodowska-Curie Research and Innovation Staff Exchanges (RISE) under the grant agreement No 823989 “IONBIKE.” The financial support received from CONICET and ANPCyT (Argentina) is also gratefully acknowledged. Thanks to the Flexible Electronic Department (FEL) of Ecole des Mines de Saint-Etienne (EMSE) for the combined mechanical/electrical characterization

    Polyphenol Iongel Patches with Antimicrobial, Antioxidant and Anti-Inflammatory Properties

    Get PDF
    There is an actual need for developing materials for wound healing applications with anti-inflammatory, antioxidant, or antibacterial properties in order to improve the healing performance. In this work, we report the preparation and characterization of soft and bioactive iongel materials for patches, based on polymeric poly(vinyl alcohol) (PVA) and four ionic liquids containing the cholinium cation and different phenolic acid anions, namely cholinium salicylate ([Ch][Sal]), cholinium gallate ([Ch][Ga]), cholinium vanillate ([Ch][Van]), and cholinium caffeate ([Ch][Caff]). Within the iongels, the phenolic motif in the ionic liquids plays a dual role, acting as a PVA crosslinker and a bioactive compound. The obtained iongels are flexible, elastic, ionic conducting, and thermoreversible materials. Moreover, the iongels demonstrated high biocompatibility, non-hemolytic activity, and non-agglutination in mice blood, which are key-sought material specifications in wound healing applications. All the iongels have shown antibacterial properties, being PVA-[Ch][Sal], the one with higher inhibition halo for Escherichia Coli. The iongels also revealed high values of antioxidant activity due to the presence of the polyphenol, with the PVA-[Ch][Van] iongel having the highest activity. Finally, the iongels show a decrease in NO production in LPS-stimulated macrophages, with the PVA-[Ch][Sal] iongel displaying the best anti-inflammatory activity (>63% at 200 µg/mL).This work was funding by Marie Sklodowska-Curie Research and Innovation Staff Exchanges (RISE) under the grant agreement No 823989 “IONBIKE”, CONICET (PIP 11220200101353CO), ANPCyT (PICT-2020-03156), and the National University of the Litoral (C.A.I. + D 50620190100117LI), and Fundação para a Ciência e a Tecnologia (2020.01555.CEECIND, UIDB/50006/2020 and UIDP/50006/2020)

    Biobased supramolecular ionic networks with optimized crystallinity and mechanical properties as promising dynamic materials for eutectogels design

    Get PDF
    Ionic supramolecular networks are attractive materials for technological applications with unique properties such as ionic conductivity, stimuli-responsiveness, recyclability, and self-healing. Herein, new semicrystalline supramolecular ionic networks are designed from fully biobased building blocks such as tartaric acid, phytic acid, sebacic acid, and a fatty dimer diamine (Priamine™ 1071). The combination of tartaric acid with Priamine™ 1071 results in a crystalline and brittle polymer, but its molecular regularity can be controlled by incorporating sebacic acid or phytic acid, affording tough materials with appropriate mechanical properties (elastic moduli ranging 19–42 MPa). Furthermore, the ionic polymers show network-to-liquid phase transitions between 75 and 127 °C, and in the liquid state, they were found to be miscible with a lithium-based deep eutectic solvent, yielding flexible and conductive eutectogels. Altogether, these dynamic networks could open new prospects for developing fully green soft ionic materials from their combination with other innovative and low-cost eutectic mixtures.Open Access funding provided by the University of Basque Country. The financial support received from CONICET and ANPCyT (PICT 2018-01032) (Argentina) is gratefully acknowledged

    Enhancing the coating properties of acrylic/casein latexes with high protein content

    No full text
    Casein-derived materials are highly attractive as a consequence of their environmental friendliness and excellent film-forming properties. Due to the casein hydrophilicity, films containing a large protein content are highly susceptible to water, thus limiting their use in coating applications. A novel approach for synthesizing waterborne acrylic?casein latexes with large content of protein and high degree of compatibilization between both components is presented. The employed synthesis strategy involves the use of a highly methacrylated casein in an emulsifier-free emulsion polymerization of acrylic monomers with the aim of controlling both the fraction of grafted biomaterial and the amount of acrylic chains linked onto the protein backbone. The performance of the resulting materials was evaluated in a water-based coating application. The used methacrylation approach allowed the maximum compatibilization of 33% of casein in the hybrid polymer. The as-obtained casein-derived films were proven to exhibit superior water resistance, which would open a new possibility for designing biobased coatings in several fields.Fil: Picchio, Matías L.. Universidad Nacional del Litoral; Argentina. Universidad Tecnológica Nacional; ArgentinaFil: Minari, Roque Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina. Universidad Nacional del Litoral; ArgentinaFil: Gugliotta, Luis Marcelino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina. Universidad Nacional del Litoral; Argentin

    Manufacturing Techniques for Nanoparticles in Drug Delivery

    No full text
    Nanotechnology has become a key strategy for manufacturing products in numerous fields such as medicine, food, cosmetics, clothing, art, and different engineering areas (chemical, agricultural, petroleum, among others). Undoubtedly, nanoparticles (NPs) have significantly impacted on the development of novel medicines, increasingly becoming a central element for diagnosing, preventing, and treating a large number of acute and chronic diseases. In this evolving scenario, both academic laboratories and the pharmaceutical industry have explored different approaches to prepare NPs for drug delivery purposes, which can be generally divided into two main categories: the bottom-up and top-down techniques. Whereas the first group implies building up the particles from dissolved molecules or monomers, the latter involves applying energy to break down large particles, leading to colloidal materials with particle sizes in the submicrometer scale. Among the various nanoparticle-based drug delivery systems available, polymeric and lipid NPs, together with drug nanocrystals, have revolutionized modern medicine, providing innovative therapeutic alternatives for various diseases. This chapter describes the specific bottom-up and top-down techniques used to obtain such nanosystems.Fil: Real, Daniel. Universidad de Chile.; ChileFil: Formica, María Lina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Farmacia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Picchio, Matías Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Paredes, Alejandro Javier. The Queens University of Belfast; Irlanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Investigación y Desarrollo en Tecnología Farmacéutica. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Unidad de Investigación y Desarrollo en Tecnología Farmacéutica; Argentin
    corecore