364 research outputs found
Editorial: Molecular Mechanisms of Pathogen-Driven Infectious and Neoplastic Diseases
No abstract availabl
Stromal SPARC contributes to the detrimental fibrotic changes associated with myeloproliferation whereas its deficiency favors myeloid cell expansion.
In myeloid malignancies, the neoplastic clone outgrows normal hematopoietic cells toward BM failure. This event is also sustained by detrimental stromal changes, such as BM fibrosis and osteosclerosis, whose occurrence is harbinger of a dismal prognosis. We show that the matricellular protein SPARC contributes to the BM stromal response to myeloproliferation. The degree of SPARC expression in BM stromal elements, including CD146(+) mesenchymal stromal cells, correlates with the degree of stromal changes, and the severity of BM failure characterizing the prototypical myeloproliferative neoplasm primary myelofibrosis. Using Sparc(-/-) mice and BM chimeras, we demonstrate that SPARC contributes to the development of significant stromal fibrosis in a model of thrombopoietin-induced myelofibrosis. We found that SPARC deficiency in the radioresistant BM stroma compartment impairs myelofibrosis but, at the same time, associates with an enhanced reactive myeloproliferative response to thrombopoietin. The link betwen SPARC stromal deficiency and enhanced myeloid cell expansion under a myeloproliferative spur is also supported by the myeloproliferative phenotype resulting from the transplantation of defective Apc(min) mutant hematopoietic cells into Sparc(-/-) but not WT recipient BM stroma. Our results highlight a complex influence of SPARC over the stromal and hematopoietic BM response in myeloproliferative conditions
Prognostic Markers in Peripheral T-Cell Lymphoma
Based on their own experience and knowledge of the literature, the authors review the pathobiological characteristics of peripheral T-cell lymphomas (PTCLs), focusing on the available prognostic indicators. The International Prognostic Index (IPI), which is based on age, performance status, lactate dehydrogenase [LDH], stage, and extranodal involvement, appears to be efficient as a prognostic index for PTCLs, at least in part and especially for certain PTCL subtypes. However, it is not so satisfactory for the two commonest PTCLs, PTCL not otherwise specified (PTCL/NOS) and angioimmunoblastic T-cell lymphoma (AITL), for which novel scores, possibly based on the biologic features of the tumors, have been explored. An Italian cooperative group proposed a revision of the IPI for PTCL unspecified (PTCL-U), the Prognostic Index for PTCL-U (PIT), which includes age, performance status, LDH, and bone marrow involvement. The PIT apparently offered some advantages, but they were not confirmed in subsequent studies. A clinical-biological score (the Bologna score) was then proposed, including tumor proliferation and clinical features (age, LDH, and performance status). This score appears promising and offers the intriguing advantage of integrating biological and clinical elements, but independent validation on a large series is still warranted. More recently, gene expression profiling has been used to identify novel molecular prognostic factors. In particular, inactivation of the NFκB pathway, high expression of proliferation-associated genes, and cytotoxic molecular phenotype seem to be associated with a worse outcome. So far, however, none of these indicators has been validated in an independent series. Finally, various reports have dealt specifically with the prognostication of NK-derived tumors, including nasal and nasal-type lymphomas. Both the IPI and dedicated models have turned out to be of prognostic relevance for these tumors. In conclusion, although the IPI is somewhat effective for PTCL prognostication, novel scores that are more refined and possibly disease-specific are warranted. The validation process for several models, including clinical-pathological and molecular models, is now ongoing
Plasmablastic transformation of a pre-existing plasmacytoma: a possible role for reactivation of Epstein Barr virus infection.
Evaluation of Modified PEG-Anilinoquinazoline Derivatives as Potential Agents for EGFR Imaging in Cancer by Small Animal PET
Purpose: The in vivo evaluation of three modified polyethylene glycol (PEG)-anilinoquinazoline derivatives labeled with 124 I, 18 F, and 11 C as potential positron emission tomography (PET) bioprobes for visualizing epidermal growth factor receptor (EGFR) in cancer using small animal PET. Procedures: Xenograft mice with the human glioblastoma cell lines U138MG (lacking EGFR expression) and U87MG.wtEGFR (transfected with an overexpressing human wild-type EGFR gene) were used. Static and dynamic PET imaging was conducted for all three PEGylated compounds. Tumor necrosis, microvessel density, and EGFR levels were evaluated by histopathology and enzyme-linked immunosorbent assay. Results: Nineteen animal models were generated (two U138MG, three U87MG, 14 with both U138MG and U87MG bilateral masses). In static images, a slight increase in tracer uptake was observed in tumors, but in general, there was no retention of tracer uptake over time and no difference in uptake between U138MG and U87MG masses. In addition, no significant uptake was demonstrated in dynamic scans of the 18 F-PEG tracer. No necrosis was present except in four animals. MVD was 9.6 and 48 microvessels/×400 field in the U138GM and U87GM masses
New developments in the pathology of malignant lymphoma: a review of the literature published from May to July 2008
Conserved Molecular Underpinnings and Characterization of a Role for Caveolin-1 in the Tumor Microenvironment of Mature T-Cell Lymphomas
Neoplasms of extra-thymic T-cell origin represent a rare and difficult population characterized by poor clinical outcome, aggressive presentation, and poorly defined molecular characteristics. Much work has been done to gain greater insights into distinguishing features among malignant subtypes, but there also exists a need to identify unifying characteristics to assist in rapid diagnosis and subsequent potential treatment. Herein, we investigated gene expression data of five different mature T-cell lymphoma subtypes (n = 187) and found 21 genes to be up- and down-regulated across all malignancies in comparison to healthy CD4+ and CD8+ T-cell controls (n = 52). From these results, we sought to characterize a role for caveolin-1 (CAV1), a gene with previous description in the progression of both solid and hematological tumors. Caveolin-1 was upregulated, albeit with a heterogeneous nature, across all mature T-cell lymphoma subtypes, a finding confirmed using immunohistochemical staining on an independent sampling of mature T-cell lymphoma biopsies (n = 65 cases). Further, stratifying malignant samples in accordance with high and low CAV1 expression revealed that higher expression of CAV1 in mature T-cell lymphomas is analogous with an enhanced inflammatory and invasive gene expression profile. Taken together, these results demonstrate a role for CAV1 in the tumor microenvironment of mature T-cell malignancies and point toward potential prognostic implications
Pediatric T- and NK-cell lymphomas: new biologic insights and treatment strategies
T- and natural killer (NK)-cell lymphomas are challenging childhood neoplasms. These cancers have varying presentations, vast molecular heterogeneity, and several are quite unusual in the West, creating diagnostic challenges. Over 20 distinct T- and NK-cell neoplasms are recognized by the 2008 World Health Organization classification, demonstrating the diversity and potential complexity of these cases. In pediatric populations, selection of optimal therapy poses an additional quandary, as most of these malignancies have not been studied in large randomized clinical trials. Despite their rarity, exciting molecular discoveries are yielding insights into these clinicopathologic entities, improving the accuracy of our diagnoses of these cancers, and expanding our ability to effectively treat them, including the use of new targeted therapies. Here, we summarize this fascinating group of lymphomas, with particular attention to the three most common subtypes: T-lymphoblastic lymphoma, anaplastic large cell lymphoma, and peripheral T-cell lymphoma-not otherwise specified. We highlight recent findings regarding their molecular etiologies, new biologic markers, and cutting-edge therapeutic strategies applied to this intriguing class of neoplasms
- …
