12 research outputs found

    Estimulación del sistema incretina en el remodelado cardiaco inducido por diabetes tipo 2 e isquemia/reperfusión experimentales

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Medicina, Departamento de Medicina. Fecha de lectura: 20-02-2015La enfermedad cardiovascular es la principal causa de muerte en el mundo actual. Estudios clínicos y experimentales han demostrado que la diabetes per se, independientemente de otras patologías cardiovasculares asociadas, puede inducir un daño crónico en el miocardio. Esta nueva entidad recibe el nombre de miocardiopatía diabética y está caracterizada por alteraciones moleculares de origen metabólico y eventos de apoptosis, hipertrofia y fibrosis, que tienen como consecuencia la aparición de disfunción diastólica y sistólica, que pueden dar lugar a episodios de insuficiencia cardiaca e infarto agudo de miocardio. Sin embargo, los mecanismos intracelulares involucrados no están completamente descritos, lo que conlleva la ausencia de un tratamiento específico. Además, a pesar de los avances significativos en la terapia médica y las mejoras en la prevención primaria y secundaria de la enfermedad arterial coronaria, el infarto agudo de miocardio continúa siendo la principal causa de muerte en estos pacientes y a nivel global. La reperfusión precoz del miocardio infartado, bien por intervención percutánea coronaria o bien por trombolisis, es la terapia actual efectiva para reducir el tamaño del infarto, preservar la función sistólica del ventrículo izquierdo y reducir la morbilidad y mortalidad cardiovascular en los pacientes. Mientras que el tamaño de infarto es un importante predictor de mortalidad, la insuficiencia cardiaca y el remodelado deletéreo del ventrículo izquierdo son determinantes del pronóstico de la función cardiaca y eventos cardiovasculares futuros. Fármacos basados en la estimulación del sistema incretina como los inhibidores de la dipeptidil peptidasa-­‐4, y los agonistas de GLP-­‐1, son una nueva clase de drogas antidiabéticas que podrían ejercer una acción dual sobre la sensibilidad a insulina y directamente sobre la célula cardiaca. En un modelo experimental de miocardiopatía diabética, las ratas diabéticas tipo-­‐2 presentaron hiperglucemia, hiperlipemia, resistencia a insulina, disfunción cardiaca, remodelado (hipertrofia y fibrosis) y apoptosis miocárdica. El tratamiento con sitagliptina, un inhibidor de la DPP-­‐4, mejoró el control glucémico y el perfil lipídico mediante el aumento de GLP-­‐1 endógeno y el consiguiente incremento de los niveles de insulina. Además, mejoró la función cardiaca y redujo los niveles de expresión de moléculas profibróticas, hipertróficas y apoptóticas. En particular, en miocitos y fibroblastos cardiacos en cultivo, altas concentraciones de glucosa o de ácido palmítico estimularon la expresión de moléculas profibróticas, proceso que fue revertido con el pretratamiento con GLP-­‐1 exógeno. Este efecto podría estar mediado por la activación de PPARβ/δ, receptor nuclear de ácidos grasos que actúa como factor de transcripción y que podría controlar la expresión de genes profibróticos como fibronectina. Por otra parte, el metabolito mayoritario de la degradación de GLP-­‐1, GLP-­‐1(9-­‐36), produjo similares efectos antifibróticos que GLP-­‐1 lo que podría reforzar el efecto insulino-­‐independiente del sistema incretina sobre el corazón. Por otro lado, el tratamiento con un agonista del receptor de GLP-­‐1 en un modelo experimental de daño por isquemia/reperfusión en cerdo presentó efectos cardioprotectores reduciendo el tamaño de infarto y mejorando la función sistólica del ventrículo izquierdo. Este tratamiento redujo el remodelado cardiaco medido por la presencia de hipertrofia cardiaca y celular compensatoria, y fibrosis intersticial. Estos datos sugieren que la inducción del sistema incretina podría reducir el daño miocárdico tanto a nivel crónico en la miocardiopatía diabética como en eventos agudos como el infarto agudo de miocardioCardiovascular diseases are currently the leading causes of death in the world. Experimental and clinical studies have demonstrated the existence of heart failure in diabetic patients independently of any vascular disease or hypertension. Diabetic cardiomyopathy is characterized by molecular alterations due to metabolic changes and events of apoptosis, hypertrophy and fibrosis, which can lead to heart dysfunction and failure and acute myocardial infarction. However, the intracellular mechanisms involved are not fully described, which entails the absence of specific treatment. Moreover, despite the significant advances in medical therapy and improvements in primary and secondary prevention of coronary artery disease, acute myocardial infarction remains the leading cause of death in these patients. Early reperfusion of infarcted myocardium by either percutaneous coronary intervention or thrombolysis are effective in reducing infarct size, preserving left ventricular systolic function and reducing cardiovascular morbidity and mortality. However, ischemia/reperfusion leads to myocardial remodeling which includes deletereous responses like apoptosis and fibrosis. These events will be determinants of heart function and future cardiovascular events. Drugs based on incretin system stimulation, inhibitors of dipeptidyl peptidase-­‐4 and GLP-­‐1 agonists, are a new class of antidiabetic drugs that could exert a dual action, raising insulin sensitivity and also directly affecting the cardiac cell. In an experimental model of diabetic cardiomyopathy, type-­‐2 diabetic rats showed hyperglycemia, hyperlipidemia, insulin resistance, cardiac dysfunction, remodeling (hypertrophy and fibrosis) and myocardial apoptosis. Treatment with sitagliptin, a DPP-­‐4 inhibitor, controlled glycemia and lipidemia through the stabilization of endogenous GLP-­‐1 and increasing insulin levels. In addition, it improved cardiac function and reduced levels of expression of fibrotic, hypertrophic and apoptotic molecules. During in vitro studies with cardiac myocytes and fibroblasts, high concentrations of glucose or palmitic acid increased the expression of profibrotic molecules. This effect was reversed by the pretreatment with exogenous GLP-­‐1, and likely mediated by PPARβ/δ activation, a fatty acid nuclear receptor that acts as a transcription factor and could control the expression of profibrotic genes such as fibronectin. Moreover, the major metabolite of GLP-­‐1, GLP-­‐1 (9-­‐36), produced similar antifibrotic effects to those of GLP-­‐1, which might reinforce the insulin-­‐independent effect of the incretin system on the heart. In this regard, treatment with a GLP-­‐1 receptor agonist, exenatide, significantly reduced the infarct size in an experimental model of ischemia/reperfusion injury in pigs. Furthermore, this drug reduced cardiac remodeling measured by cardiac hypertrophy and interstitial fibrosis, and improved left ventricle systolic and mechanical function at one week and one month after myocardial infarction. These data suggest that the stimulation of the incretin system could reduce diabetic cardiomyopathy and ischemia/reperfusion associated cardiac damage

    Sitagliptin reduces cardiac apoptosis, hypertrophy and fibrosis primarily by insulin-dependent mechanisms in experimental type-II diabetes. Potential roles of GLP-1 isoforms

    Get PDF
    Background:Myocardial fibrosis is a key process in diabetic cardiomyopathy. However, their underlying mechanisms have not been elucidated, leading to a lack of therapy. The glucagon-like peptide-1 (GLP-1) enhancer, sitagliptin, reduces hyperglycemia but may also trigger direct effects on the heart.Methods:Goto-Kakizaki (GK) rats developed type-II diabetes and received sitagliptin, an anti-hyperglycemic drug (metformin) or vehicle (n=10, each). After cardiac structure and function assessment, plasma and left ventricles were isolated for biochemical studies. Cultured cardiomyocytes and fibroblasts were used for in vitro assays.Results:Untreated GK rats exhibited hyperglycemia, hyperlipidemia, plasma GLP-1 decrease, and cardiac cell-death, hypertrophy, fibrosis and prolonged deceleration time. Moreover, cardiac pro-apoptotic/necrotic, hypertrophic and fibrotic factors were up-regulated. Importantly, both sitagliptin and metformin lessened all these parameters. In cultured cardiomyocytes and cardiac fibroblasts, high-concentration of palmitate or glucose induced cell-death, hypertrophy and fibrosis. Interestingly, GLP-1 and its insulinotropic-inactive metabolite, GLP-1(9-36), alleviated these responses. In addition, despite a specific GLP-1 receptor was only detected in cardiomyocytes, GLP-1 isoforms attenuated the pro-fibrotic expression in cardiomyocytes and fibroblasts. In addition, GLP-1 receptor signalling may be linked to PPARδ activation, and metformin may also exhibit anti-apoptotic/necrotic and anti-fibrotic direct effects in cardiac cells.Conclusions:Sitagliptin, via GLP-1 stabilization, promoted cardioprotection in type-II diabetic hearts primarily by limiting hyperglycemia e hyperlipidemia. However, GLP-1 and GLP-1(9-36) promoted survival and anti-hypertrophic/fibrotic effects on cultured cardiac cells, suggesting cell-autonomous cardioprotective actionsThis work was supported by national funding from Ministerio de Educación y Ciencia (SAF2009-08367), Comunidad de Madrid (CCG10-UAM/ BIO-5289), and a unrestricted grant from by Merck/MS

    Sitagliptin improved glucose assimilation in detriment of fatty-acid utilization in experimental type-II diabetes: Role of GLP-1 isoforms in Glut4 receptor trafficking

    Full text link
    Background: The distribution of glucose and fatty-acid transporters in the heart is crucial for energy consecution and myocardial function. In this sense, the glucagon-like peptide-1 (GLP-1) enhancer, sitagliptin, improves glucose homeostasis but it could also trigger direct cardioprotective actions, including regulation of energy substrate utilization. Methods: Type-II diabetic GK (Goto-Kakizaki), sitagliptin-treated GK (10 mg/kg/day) and wistar rats (n = 10, each) underwent echocardiographic evaluation, and positron emission tomography scanning for [ 18 F]-2-fluoro-2-deoxy-d-glucose ( 18 FDG). Hearts and plasma were isolated for biochemical approaches. Cultured cardiomyocytes were examined for receptor distribution after incretin stimulation in high fatty acid or high glucose media. Results: Untreated GK rats exhibited hyperglycemia, hyperlipidemia, insulin resistance, and plasma GLP-1 reduction. Moreover, GK myocardium decreased 18 FDG assimilation and diastolic dysfunction. However, sitagliptin improved hyperglycemia, insulin resistance, and GLP-1 levels, and additionally, enhanced 18 FDG uptake and diastolic function. Sitagliptin also stimulated the sarcolemmal translocation of the glucose transporter-4 (Glut4), in detriment of the fatty acyl translocase (FAT)/CD36. In fact, Glut4 mRNA expression and sarcolemmal translocation were also increased after GLP-1 stimulation in high-fatty acid incubated cardiomyocytes. PI3K/Akt and AMPKα were involved in this response. Intriguingly, the GLP-1 degradation metabolite, GLP-1(9-36), showed similar effects. Conclusions: Besides of its anti-hyperglycemic effect, sitagliptin-enhanced GLP-1 may ameliorate diastolic dysfunction in type-II diabetes by shifting fatty acid to glucose utilization in the cardiomyocyte, and thus, improving cardiac efficiency and reducing lipolysisThis work was supported by national grants from Ministerio de Educación y Ciencia (SAF2009-08367), Comunidad de Madrid (CCG10-UAM/BIO-5289), and PIE13/00051 and PI14/00386 (IS. Carlos III). Merck Sharp and Dohme (Darmstadt, Germany) provided sitagliptin and partial financial support to the conduct of the stud

    Eplerenone attenuated cardiac steatosis, apoptosis and diastolic dysfunction in experimental type-II diabetes

    Full text link
    Cardiac steatosis and apoptosis are key processes in diabetic cardiomyopathy, but the underlying mechanisms have not been elucidated, leading to a lack of effective therapy. The mineralocorticoid receptor blocker, eplerenone, has demonstrated anti-fibrotic actions in the diabetic heart. However, its effects on the fatty-acid accumulation and apoptotic responses have not been revealed. Methods: Non-hypertensive Zucker Diabetic Fatty (ZDF) rats received eplerenone (25 mg/kg) or vehicle. Zucker Lean (ZL) rats were used as control (n = 10, each group). After 16 weeks, cardiac structure and function was examined, and plasma and hearts were isolated for biochemical and histological approaches. Cultured cardiomyocytes were used for in vitro assays to determine the direct effects of eplerenone on high fatty acid and high glucose exposed cells. Results: In contrast to ZL, ZDF rats exhibited hyperglycemia, hyperlipidemia, insulin-resistance, cardiac steatosis and diastolic dysfunction. The ZDF myocardium also showed increased mitochondrial oxidation and apoptosis. Importantly, eplerenone mitigated these events without altering hyperglycemia. In cultured cardiomyocytes, high-concentrations of palmitate stimulated the fatty-acid uptake (in detriment of glucose assimilation), accumulation of lipid metabolites, mitochondrial dysfunction, and apoptosis. Interestingly, fatty-acid uptake, ceramides formation and apoptosis were also significantly ameliorated by eplerenone. Conclusions: By blocking mineralocorticoid receptors, eplerenone may attenuate cardiac steatosis and apoptosis, and subsequent remodelling and diastolic dysfunction in obese/type-II diabetic ratsThis work was supported by national grants from Ministerio de Educación y Ciencia (SAF2009-08367), Comunidad de Madrid (CCG10-UAM/BIO-5289), FISS (PI10/00072), and a grant from by Pfizer (NY, USA), Spanish Ministry of Economy and Competitiveness (MINECO) CTQ2011-23562. These grants were used to provide consumables and animals required. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. AF received funding from the European Union Seventh Framework Programme [FP7/2007-2013] under grant agreement nº 26486

    Targeting metabolic disturbance in the diabetic heart

    No full text
    Diabetic cardiomyopathy is defined as ventricular dysfunction initiated by alterations in cardiac energy substrates in the absence of coronary artery disease and hypertension. In addition to the demonstrated burden of cardiovascular events associated with diabetes, diabetic cardiomyopathy partly explains why diabetic patients are subject to a greater risk of heart failure and a worse outcome after myocardial ischemia. The raising prevalence and accumulating costs of cardiovascular disease in diabetic patients underscore the deficiencies of tertiary prevention and call for a shift in medical treatment. It is becoming increasingly clearer that the effective prevention and treatment of diabetic cardiomyopathy require measures to regulate the metabolic derangement occurring in the heart rather than merely restoring suitable systemic parameters. Recent research has provided deeper insight into the metabolic etiology of diabetic cardiomyopathy and numerous heart-specific targets that may substitute or reinforce current strategies. From both experimental and translational perspectives, in this review we first discuss the progress made with conventional therapies, and then focus on the need for prospective metabolic targets that may avert myocardial vulnerability and functional decline in next-generation diabetic careThis work was supported by national grants from Ministerio de Educación y Ciencia (SAF2009-08367) and Comunidad de Madrid (CCG10-UAM/BIO-5289)

    Sitagliptin and metformin reduced T2DM-associated cell-death and fibrosis in the heart.

    No full text
    <p>(<b>a</b>) By TUNEL, detection of apoptotic cells in the myocardium (see arrows) and heart vessel (see arrowheads). At the bottom, a typical striated-like pattern immunostaining of vinculin (see arrows). (<b>b</b>) Caspase-3 expression in the hearts. (<b>c</b>) Masson staining for wistar, GK and GK-treated hearts showing ECM accumulation (green-blue staining) (n=10, each group). (<b>d</b>) ECM protein [pro-type-I collagen and fibronectin (FN)] levels, and pro-fibrotic mRNA expression (TGFß<sub>1</sub> and CTGF) (n=10, each group). *p<0.05 and **p<0.01 vs. wistar. †p<0.05 and ††p<0.01 vs. GK rats.</p

    GLP-1 reduced pro-fibrotic molecules in HF- or HG-stimulated cardiomyocytes.

    No full text
    <p>(<b>a</b>) GLP1R expression in the GK model (left) (n=5, each group), and HL-1 stimulated cardiomyocytes (right). A representative QPCR-amplification plot of each rat or stimulated cell is also showed. (<b>b</b>) Intracellular (by WB and IF) and (<b>c</b>) secreted levels of fibronectin (FN) in GLP-1-pre-treated cardiomyocytes exposed to HF (0.25 mM) or HG (33 mM). (<b>d</b>) Pro-fibrotic expression (TGFß<sub>1</sub> and CTGF) in stimulated cardiomyocytes. *p<0.05 and **p<0.01 vs. control. †p<0.05 and ††p<0.01 vs. HF or HG.</p

    Sitagliptin improved glucose intolerance in GK

    No full text
    <p><b>rats</b>. Plasma (<b>a</b>) GLP-1, (<b>b</b>) insulin and (<b>c</b>) glucose were evaluated in the rats before (fasting) and 15-min/60-min after glucose loading (n=10, each group). The G-black arrow indicates glucose-overload. *p<0.05 and **p<0.01 vs. wistar. †p<0.05 and ††p<0.01 vs. GK rats. §p<0.05 and §§p<0.01 vs. fasting state.</p
    corecore