370 research outputs found

    Resistance to melon vine decline derived from Cucumis melo spp. agrestis: genetic analysis of root structure and root response.

    Get PDF
    Melon vine decline is a major soilborne disease that causes severe economic losses around the world

    Sources of parthenocarpy for Zucchini breeding: relationship with ethylene production and sensitivity

    Full text link
    Parthenocarpy is becoming an essential trait for off-season greenhouse production of Zucchini squash. Given that winter conditions promote a reduction in the number of male flowers and in the activity of pollinators, the application of synthetic auxins is currently the most widespread method to induce fruit set. We have evaluated the parthenocarpic tendency of 48 long-fruited accessions of Cucurbita pepo spp. pepo, from morphotypes Zucchini, Vegetable marrow and Cocozelle, including 45 traditional cultivars and 3 commercial hybrids, with the goal of identifying new sources of parthenocarpy for breeding programs. After the first screening, 20 selected accessions were evaluated for the growth rate of unpollinated fruit. Twelve of the selected accessions identified as either strongly parthenocarpic or non-parthenocarpic, were compared for fruit rate growth, ethylene production and ethylene sensitivity. Apart from the three control hybrids, the fastest parthenocarpic fruit growth was observed in 'CpCAL112', 'CM-37', 'E-27', 'PI261610', and 'V-185'. The source of the parthenocarpy of some of these accessions differs from that of the hybrids as it was not associated with the conversion of female into bisexual flowers or with the so-called "fruits with attached flowers" syndrome, which is an undesirable trait in current parthenocarpic hybrids. The alternative sources of parthenocarpy may be of great importance in current Zucchini breeding programs. We also demonstrate that the parthenocarpy of these accessions is associated with downregulation of ethylene production in unpollinated fruits during the first days post anthesis (DPA). In non-parthenocarpic accessions, unpollinated fruits boosted ethylene production at 3 DPA, concomitantly with fruit abortion and senescence, while in parthenocarpic accessions, fruits produced little ethylene at 3 DPA. Therefore, ethylene production in ovaries/fruits at 3 DPA can be used as a marker to identify and select parthenocarpy in Zucchini squash. However, in the cultivars tested here, ethylene production and sensitivity in vegetative organs and in male flowers earlier than 3 PDA do not appear well associated with parthenocarpy.Martinez, C.; Manzano, S.; Megias, Z.; Garrido, D.; Picó Sirvent, MB.; Jamilena, M. (2014). Sources of parthenocarpy for Zucchini breeding: relationship with ethylene production and sensitivity. Euphytica. 200(3):349-362. doi:10.1007/s10681-014-1155-83493622003Byers R, Baker L, Dilley D, Sell H (1972) Chemical induction of perfect flowers on a gynoecious line of muskmelon, Cucumis melo L. HortSci 9:321–331Carbonell-Bejerano P, Urbez C, Granell A, Carbonell J, Perez-Amador MA (2011) Ethylene is involved in pistil fate by modulating the onset of ovule senescence and the GA-mediated fruit set in Arabidopsis. BMC Plant Biol 11:84de Jong M, Mariani C, Vriezen WH (2009) The role of auxin and gibberellin in tomato fruit set. J Exp Bot 60:1523–1532de Menezes CB, Maluf WR, De Azevedo SM, Faria MV, Nascimento IR, Nogueira DW, Gomes LAA, Bearzoti E (2005) Inheritance of parthenocarpy in summer squash (Cucurbita pepo L.). Genet Mol Res 4:39–46de Ponti OMB, Garretsen F (1976) Inheritance of parthenocarpy in pickling cucumbers (Cucumis sativus L.) and linkage with other characters. Euphytica 25:633–642Decker DS (1988) Origin(s), evolution, and systematics of Cucurbita pepo (Cucurbitaceae). Econ Bot 42:4–15den Nijs APM, Balder J (1983) Growth of parthenocarpic and seed-bearing fruits of zucchini squash. Cucurbit Genet Coop Rep 6:84–85den Nijs APM, van Zanten N (1982) Parthenocarpic fruit set in glasshouse grown zucchini squash. Cucurbit Genet Coop Rep 5:44–45Durham G (1925) Has parthenogenesis been confused with hermaphroditism in Cucurbita? Am Nat 59:283–294Ferriol M, Picó B, Nuez F (2003) Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor Appl Genet 107:271–282Formisano G, Roig C, Esteras C, Ercolano MR, Nuez F, Monforte AJ, Picó MB (2012) Genetic diversity of Spanish Cucurbita pepo landraces: an unexploited resource for summer squash breeding. Genet Resour Crop Evol 59:1169–1184Globerson D (1971) Effects of pollination on set and growth of summer squash (Cucumis pepo) in Israel. Expt Agr 7:183–188Gómez P, Peñaranda A, Garrido D, Jamilena M (2004) Evaluation of flower abscission and sex expression in different cultivars of zucchini squash (Cucurbita pepo). In: Lebeda A, Paris H (eds) Progress in Cucurbit genetics and breeding research. Eucarpia-Cucurbitaceae 2004. Palacký University, Olomouc, pp 347–352Jobst J, King K, Hemleben V (1998) Molecular evolution of the internal transcribed spacers (ITS1 and ITS2) and phylogenetic relationships among species of the family Cucurbitaceae. Mol Phylogenet Evol 9:204–219Katzir N, Tadmor Y, Tzuri G, Leshzeshen E, Mozes-Daube N, Danin-Poleg Y, Paris HS (2000) Further ISSR and preliminary SSR analysis of relationships among accessions of Cucurbita pepo. Acta Hortic 510:433–439Loy JB (2012) Breeding squash and pumpkins. In: Wang Y, Behera T, Kole C (eds) Genetics, genomics and breeding of cucurbits. Hew Hampshire, Science Publisher, Enfield, pp 93–139Manzano S, Martínez C, Domínguez V, Avalos E, Garrido D, Gómez P, Jamilena M (2010) A major gene conferring reduced ethylene sensitivity and maleness in Cucurbita pepo. J Plant Growth Regul 29:73–80Manzano S, Martínez C, Megías Z, Gómez P, Garrido D, Jamilena M (2011) The role of ethylene and brassinosteroids in the control of sex expression and flower development in Cucurbita pepo. Plant Growth Regul 65:213–221Manzano S, Martínez C, Megías Z, Garrido D, Jamilena M (2013) Involvement of ethylene biosynthesis and signalling in the transition from male to female flowering in the monoecious Cucurbita pepo. J Plant Growth Regul 1–10Martínez C, Manzano S, Kraaman P, Jamilena M (2008) Producción de etileno: un marcador temprano para seleccionar ginoecia en melón. Actas Hortic 51:197–198Martínez C, Manzano S, Megías Z, Garrido D, Picó B, Jamilena M (2013) Involvement of ethylene biosynthesis and signalling in fruit set and early fruit development in zucchini squash (Cucurbita pepo L.). BMC Plant Biol 13:139Martínez C, Manzano S, Megías Z, Barrera A, Boualem A, Garrido D, Bendahmane A, Jamilena M (2014) Molecular and functional characterization of CpACS27A gene reveals its involvement in monoecy instability and other associated traits in squash (Cucurbita pepo L.). Planta 1–15Nee M (1990) The domestication of Cucurbita (Cucurbitaceae). Econ Bot 44:56–68Nepi M, Pacini E (1993) Pollination, pollen viability and pistil receptivity in Cucurbita pepo. Ann Bot 72:527–536Nitsch J, Kurtz E, Liverman J, Went F (1952) The development of sex expression in cucurbit flowers. Am J Bot 39:32–43Om Y, Hong K (1989) Evaluation of parthenocarpic fruit set in zucchini squash. Res Rpt Rural Dev Adm (Suweon) 31:30–33Orzáez D, Granell A (1997) DNA fragmentation is regulated by ethylene during carpel senescence in Pisum sativum. Plant J 11:137–144Owens K, Peterson C, Tolla G (1980) Production of hermaphrodite flowers on gynoecious muskmelon by silver nitrate and aminoethoxyvinylglycine. HortSci 15:654–655Ozga JA, Reinecke DM (2003) Hormonal interactions in fruit development. J Plant Growth Regul 22:73–81Paris HS (1986) A proposed subspecific classification for Cucurbita pepo. Phytologia 61:133–138Paris HS (2001) History of the cultivar-groups of Cucurbita pepo. In: Janick J (ed) Horticultural reviews, vol 25. Wiley, New York, pp 71–170Pascual L, Blanca JM, Cãizares J, Nuez F (2009) Transcriptomic analysis of tomato carpel development reveals alterations in ethylene and gibberellin synthesis during pat3/pat4 parthenocarpic fruit set. BMC Plant Biol 9:67Payán M, Peñaranda A, Rosales R, Garrido D, Gómez P, Jamilena M (2006) Ethylene mediates the induction of fruits with attached flower in Zucchini squash. In: Holmes GJ (ed) Proceedings of Cucurbitaceae 2006. Universal Press, Raleigh, pp 171–179Peñaranda A, Payan MC, Garrido D, Gómez P, Jamilena M (2007) Production of fruits with attached flowers in zucchini squash is correlated with the arrest of maturation of female flowers. J Hortic Sci Biotechnol 82:579–584Robinson RW (1993) Genetic parthenocarpy in Cucurbita pepo L. Cucurbit Genet Coop Rep 16:55–57Robinson RW, Reiners S (1999) Parthenocarpy in summer squash. HortSci 34:715–717Rudich J (1990) Biochemical aspects of hormonal regulation of sex expression in cucurbits. In: Bates DM, Robinson RW, Jeffrey C (eds) Biology and utilization of the Cucurbitaceae. Cornell University Press, Ithaca, pp 269–280Rylski I (1974) Effects of season on parthenocarpic and fertilized summer squash (Cucumis pepo L.). Expt Agr 10:39–44Rylski I, Aloni B (1990) Parthenocarpic fruit set and development in Cucurbitaceae and Solanaceae under protected cultivation in a mild winter climate. Acta Hortic 287:117–126Saito S, Fujii N, Miyazawa Y, Yamasaki S, Matsuura S, Mizusawa H, Fujita Y, Takahashi H (2007) Correlation between development of female flower buds and expression of the CS-ACS2 gene in cucumber plants. J Exp Bot 58:2897–2907Sanz M (1995) Fitorreguladores para el calabacín. Hortofruticultura 33:46–48Serrani JC, Carrera E, Ruiz-Rivero O, Gallego-Giraldo L, Peres LEP, García-Martínez JL (2010) Inhibition of auxin transport from the ovary or from the apical shoot induces parthenocarpic fruit-set in tomato mediated by gibberellins. Plant Physiol 153:851–862Srivastava A, Handa A (2005) Hormonal regulation of fruit development: a molecular perspective. J Plant Growth Regul 24:67–82Vriezen WH, Feron R, Maretto F, Keijman J, Mariani C (2008) Changes in tomato ovary transcriptome demonstrate complex hormonal regulation of fruit set. New Phytol 177:60–76Wien HC (2002) The cucurbits: cucumber, melon, squash and pumpkin. In: Wien HC (ed) The physiology of vegetable crops. CABI, New York, pp 345–386Yamasaki S, Fujii N, Matsuura S, Mizusawa H, Takahashi H (2001) The M locus and ethylene-controlled sex determination in andromonoecious cucumber plants. Plant Cell Physiol 42:608–61

    Habilidades del psicólogo en drogodependencias

    Get PDF
    Las habilidades del terapeuta constituyen un aspecto fundamental para la consecución de los distintos objetivos que al psicólogo se le plantean en el transcurso de su intervención con el usuario drogodependiente. En este articulo se presenta una revisión de las habilidades que los autores consideran imprescindibles, aportando ejemplos prácticos y con independencia de la orientación teórica del psicólogo. Las habilidades técnicas o profesionales se refieren a conocimientos teóricos y prácticos; el afltocontrol emocional, incluyendo tanto el afrontamiento ef caz por parte del psicólogo de ciertas situaciones ante el usuario, y especificamente si éste es un drogodelincuente, como el afrontamiento del burn out; y por último, las habilidades sociales, en las que se sustenta la interacción entre el psicólogo y el usuario, destacando la asertividad y la empatia. Finalmente se revisan distintos aspectos y principios generales referidos a la ética profesional en la práctica de la Psicologia Clínica

    First report of neocosmospora falciformis Causing Wilt and Root Rot of Muskmelon in Spain

    Get PDF
    ‘Cantaloupe’ and ‘Piel de Sapo’ are melon (Cucumis melo L.) varieties cultivated in Spain. In 2018, during a pathogens survey in experimental fields of Valencia and Alicante provinces (southeast Spain), wilt and root rot of melon plants were detected in grafted and ungrafted plants. Disease incidence ranged from 10% (Alicante) to 45% (Valencia). Symptoms included yellowing and wilting of leaves, rotting at the stem base and upper root, and collapse of the entire plant. Samplings were conducted from severely decayed and dead plants. Fragments (0.5 to 1 cm) from rotted lower stems and roots were surface disinfected for 1 min in 1.5% NaOCl, washed twice with sterilized distilled water, and plated onto potato dextrose agar (PDA) with streptomycin sulfate (0.5 g/liter). Plates were incubated at 25°C in the dark for 3 to 5 days. Mycelia resembling Fusarium were isolated and characterized by morphological and molecular methods. Based on their adpressed beige mycelia, growth in concentric rings, and absence of sporodochia, colonies growing on PDA and Spezieller Nährstoffarmer agar were preliminary identified as belonging to the Fusarium solani species complex. On PDA, colonies were white-greyish to pale-cream growing in concentric rings with beige reverse after 6 days. No sporodochia were observed. Macroconidia were slender, falcate, hyaline, ..

    Neocosmospora keratoplastica, a relevant human fusarial pathogen is found to be associated with wilt and root rot of Muskmelon and Watermelon crops in Spain: epidemiological and molecular evidences

    Full text link
    [EN] Some taxa of the Fusarium solani species complex (FSSC) have been associated with clinical infections in humans and plant diseases. Among the several fusaria that cause relevant mycoses in cucurbits in Spain, Neocosmospora keratoplastica is described for the first time as responsible for wilt and root rot in both watermelon and melon crops in producing areas of Valencia and Alicante provinces. Due to the ecological and systematic complexity of the group, with described clinical forms and plant pathogens practically indistinguishable from each other, both pathological evidences (including artificial inoculation bioassays) and molecular methods (multilocus phylogeny based on ITS, TEF-1 alpha, and RPB2 regions) are provided to confirm this finding, since the presence of this soil-borne pathogen could have been probably underestimated in cucurbits-producing areas of Spain.This work was supported by the by the Spanish Ministerio de Ciencia, Innovacion y Universidades grants AGL2017-85563-C2 (1-R and 2-R) (cofunded with FEDER funds) and by the PROMETEO project 2017/078 (to promote excellence groups) by the Conselleria d'Educacio, Investigacio, Cultura i Esports (Generalitat Valenciana).González, V.; García-Martínez, S.; Flores-León, A.; Ruiz, JJ.; Picó Sirvent, MB.; Garcés-Claver, A. (2020). Neocosmospora keratoplastica, a relevant human fusarial pathogen is found to be associated with wilt and root rot of Muskmelon and Watermelon crops in Spain: epidemiological and molecular evidences. European Journal of Plant Pathology. 156(4):1189-1196. https://doi.org/10.1007/s10658-020-01931-z118911961564Cabral, C. S., Melo, M. P., Fonseca, M. E. N., Boiteux, L. S., & Reis, A. (2016). A root rot of chickpea caused by isolates of the Fusarium solani species complex in Brazil. Plant Disease, 100, 2171. https://doi.org/10.1094/PDIS-05-15-0571-PDN.Chehri, K., Salleh, B., & Zakaria, L. (2015). Morphological and phylogenetic analysis of Fusarium solani species complex in Malaysia. Microbial Ecology, 69, 457–471.Chitrampalan, P., & Nelson Jr., B. (2015). Multilocus phylogeny reveals an association of agriculturally important Fusarium solani species complex (FSSC) 11, and clinically important FSSC 5 and FSSC 3 + 4 with soybean roots in the north central United States. Antonie Van Leeuwenhoek, 109, 335–347. https://doi.org/10.1007/s10482-015-0636-7.Coleman, J. J. (2016). The Fusarium solani species complex: ubiquitous pathogens of agricultural inportance. Molecular Plant Pathology, 17, 146–158.Crespo, M., Lawrence, D. P., Nouri, M. T., Doll, D. A., & Trouillas, F. P. (2019). Characterization of Fusarium and Neocosmospora species associated with crown rot and stem canker of pistachio rootstocks in California. Plant Disease, 103, 1931–1939.González, V., Armengol, J., & Garcés-Claver, A. (2018). First report of Fusarium petroliphilum causing fruit root of Butternut Squash in Spain. Plant Disease, 102, 1662.Martyn, R. D. (1996). Fusarium wilts. In T. A. Zitter, D. L. Hopkins, & C. E. Thomas (Eds.), Compendium of cucurbit diseases (pp. 11–16). St. Paul: APS Press.Martyn, R. D. (2014). Fusarium wilt of watermelon: 120 years of research. Horticultural Reviews, 42, 349–442.Mehl, H. L., & Epstein, L. (2007). Fusarium solani species complex isolates conspecific with Fusarium solani f. sp. cucurbitae race 2 from naturally infected human and plant tissue and environmental sources are equally virulent on plants, grow at 37° C and are interfertile. Environmental Microbiology, 9, 2189–2199.O’Donnell, K. (2000). Molecular phylogeny of the Nectria haematococca–Fusarium solani species complex. Mycologia, 92, 919–938.O’Donnell, K., Kistler, H. C., Cigelnik, E., & Ploetz, R. C. (1998). Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences of the United States of America, 95, 2044–2049.O’Donnell, K., Sutton, D. A., Fothergill, A., McCarthy, D., Rinaldi, M. G., Brandt, M. E., et al. (2008). Molecular phylogenetic diversity, multilocus haplotype nomenclature, and in vitro antifungal resistance within the Fusarium solani species complex. Journal of Clinical Microbiology, 46, 2477–2490.O’Donnell, K., Sutton, D. A., Wiederholt, N., Robert, V. A. R. G., Crous, P. W., & Geiser, D. M. (2016). Veterinary Fusarioses within the United States. Journal of Clinical Microbiology, 54, 2813–2819.Reeb, V., Lutztoni, F., & Roux, C. (2004). Contribution of RPB2 to multilocus phylogenetic studies of the euascomycetes (Pezizomycotina, Fungi) with special emphasis on the lichen-forming Acarosporaceae and evolution of polyspory. Molecular Phylogenetics and Evolution, 32, 1036–1060.Rentería-Martínez, M. E., Guerra-Camacho, M. A., Ochoa-Meza, A., Moreno-Salazar, S. F., Varela-Romero, A., Gutiérrez-Millán, L. E., & Meza-Moller, A. C. (2018). Multilocus phylogenetic analysis of fungal complex associated with root rot watermelon in Sonora, Mexico. Mexican Journal of Phytopathology, 36, 1–23. https://doi.org/10.18781/R.MEX.FIT.1710-1.Sandoval-Denis, M., & Crous, P. W. (2018). Removing chaos from confusion: assigning names to common human and animal pathogens in Neocosmospora. Persoonia, 41, 109–129.Sandoval-Denis, M., Lombard, L., & Crous, P. W. (2019). Back to the roots: a reappraisal of Neocosmospora. Persoonia, 43, 90–185.Sarmiento-Ramírez, J. M., Abella-Pérez, E., Phillott, A. D., Sim, J., van West, P., Martín, M. P., Marco, A., & Diéguez-Uribeondo, J. (2014). Global distribution of two fungal pathogens threatening endangered sea turtles. PLoS ONE, 9, e85853. https://doi.org/10.1371/journal.pone.0085853.Shaffer, J. P., U’Ren, J. M., Gallery, R. E., Baltrus, D. A., & Arnold, A. E. (2017). An endohyphal bacterium (Chitinophaga, bacteroidetes) alters carbon source use by Fusarium keratoplasticum (F. solani species complex, Nectriaceae). Frontiers in Microbiology, 8, 350.Short, D. P. G., O'Donnell, K., Thrane, U., Nielsen, K. F., Zhang, N., Juba, J. H., & Geiser, D. M. (2013). Phylogenetic relationships among members of the Fusarium solani species complex in human infections and the descriptions of F. keratoplasticum sp. nov. and F. petroliphilum stat. nov. Fungal Genetics and Biology, 53, 59–70.Sousa, E. S., Melo, M. P., Mota, J. M., Sousa, E. M. J., Beserra, J. E. A., & Matos, K. S. (2017). First report of Fusarium falciforme (FSSC 3 + 4) causing root rot in lima bean (Phaseolus lunatus L.) in Brazil. Plant Disease, 101, 1954. https://doi.org/10.1094/PDIS-05-17-0657-PDN.Sutton, D. A., & Brandt, M. B. (2011). Fusarium and other opportunistic hyaline fungi. In J. Versalovic, K. Carroll, G. Funke, et al. (Eds.), Manual of clinical microbiology (10th ed., pp. 1853–1879). Washington, USA: ASM Press.Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729. https://doi.org/10.1093/molbev/mst197.Tirado-Ramirez, M. A., Lopez-Orona, C. A., de Velazquez-Alcaraz, T. J., Diaz-Valdes, T., Velarde-Felix, S., Martinez-Campos, A. R., & Retes-Manjarrez, J. E. (2018). First report of onion basal rot caused by Fusarium falciforme in Mexico. Plant Disease, 102, 2646–2647.White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR Protocols: A Guide to Methods and Applications (345p). San Diego: Academic Press.Zhang, N., O’Donnell, K., Sutton, D. A., et al. (2006). Members of the Fusarium solani species complex that cause infections in both humans and plants are common in the environment. Journal of Clinical Microbiology, 44, 2186–2190

    Ni-Phosphide catalysts as versatile systems for gas-phase CO2 conversion: Impact of the support and evidences of structure-sensitivity

    Get PDF
    We report for the first time the support dependent activity and selectivity of Ni-rich nickel phosphide catalysts for CO2 hydrogenation. New catalysts for CO2 hydrogenation are needed to commercialise the reverse water–gas shift reaction (RWGS) which can feed captured carbon as feedstock for traditionally fossil fuel-based processes, as well as to develop flexible power-to-gas schemes that can synthesise chemicals on demand using surplus renewable energy and captured CO2. Here we show that Ni2P/SiO2 is a highly selective catalyst for RWGS, producing over 80% CO in the full temperature range of 350–750 °C. This indicates a high degree of suppression of the methanation reaction by phosphide formation, as Ni catalysts are known for their high methanation activity. This is shown to not simply be a site blocking effect, but to arise from the formation of a new more active site for RWGS. When supported on Al2O3 or CeAl, the dominant phase of as synthesized catalysts is Ni12P5. These Ni12P5 catalysts behave very differently compared to Ni2P/SiO2, and show activity for methanation at low temperatures with a switchover to RWGS at higher temperatures (reaching or approaching thermodynamic equilibrium behaviour). This switchable activity is interesting for applications where flexibility in distributed chemicals production from captured CO2 can be desirable. Both Ni12P5/Al2O3 and Ni12P5/CeAl show excellent stability over 100 h on stream, where they switch between methanation and RWGS reactions at 50–70% conversion. Catalysts are characterized before and after reactions via X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), temperature-programmed reduction and oxidation (TPR, TPO), Transmission Electron Microscopy (TEM), and BET surface area measurement. After reaction, Ni2P/SiO2 shows the emergence of a crystalline Ni12P5 phase while Ni12P5/Al2O3 and Ni12P5/CeAl both show the crystalline Ni3P phase. While stable activity of the latter catalysts is demonstrated via extended testing, this Ni enrichment in all phosphide catalysts shows the dynamic nature of the catalysts during operation. Moreover, it demonstrates that both the support and the phosphide phase play a key role in determining selectivity towards CO or CH4.Financial support for this work was provided by the Department of Chemical and Process Engineering at the University of Surrey and CO2ChemUK through the EPSRC grant EP/P026435/1 as well as the Royal Society Research Grant RSGR1180353. This work was also partially sponsored by Ministry of Science and Innovation through the projects PID2019-108453 GB-C21 and JC2019-040560-I. This work was also partially sponsored by the European Commission through the H2020-MSCA-RISE-2020 BIOALL project (Grant Agreement: 101008058. SASOL is also acknowledged for kindly providing the Al2O3-based supports

    Re-evaluation of the role of Indian germplasm as center of melon diversification based on genotyping-by-sequencing analysis

    Get PDF
    [EN] BackgroundThe importance of Indian germplasm as origin and primary center of diversity of cultivated melon is widely accepted. Genetic diversity of several collections from Indian has been studied previously, although an integrated analysis of these collections in a global diversity perspective has not been possible. In this study, a sample of Indian collections together with a selection of world-wide cultivars to analyze the genetic diversity structure based on Genotype by Sequence data.ResultsA set of 6158 informative Single Nucleotide Polymorphism (SNP) in 175 melon accessions was generated. Melon germplasm could be classified into six major groups, in concordance with horticultural groups. Indian group was in the center of the diversity plot, with the highest genetic diversity. No strict genetic differentiation between wild and cultivated accessions was appreciated in this group. Genomic regions likely involved in the process of diversification were also found. Interestingly, some SNPs differentiating inodorus and cantalupensis groups are linked to Quantitiative Trait Loci involved in ripening behavior (a major characteristic that differentiate those groups). Linkage disequilibrium was found to be low (17kb), with more rapid decay in euchromatic (8kb) than heterochromatic (30kb) regions, demonstrating that recombination events do occur within heterochromatn, although at lower frequency than in euchromatin. Concomitantly, haplotype blocks were relatively small (59kb). Some of those haplotype blocks were found fixed in different melon groups, being therefore candidate regions that are involved in the diversification of melon cultivars.ConclusionsThe results support the hypothesis that India is the primary center of diversity of melon, Occidental and Far-East cultivars have been developed by divergent selection. Indian germplasm is genetically distinct from African germplasm, supporting independent domestication events. The current set of traditional Indian accessions may be considered as a population rather than a standard collection of fixed landraces with high intercrossing between cultivated and wild melons.This work was supported by the Spanish Ministry of Economy and Competitiveness (MINECO)-FEDER grant AGL2015-64625-C2-R to AJM (project conception, experiments, data acquisition and analysis, manuscript writing, publication costs), AGL2017-85563-C2-1-R and the PROMETEO/2017/078 grant funded by Generalitat Valenciana (Conselleria d'Educacio, Investigacio, Cultura i Esport) to BP (project conception, provide samples and manuscript drafting). AD was supported by a Jae-Doc contract from CSIC (experiments and manuscript drafting).Gonzalo, M.; Díaz Bermúdez, A.; Dhillon, NPS.; Reddy, UK.; Picó Sirvent, MB.; Monforte Gilabert, AJ. (2019). Re-evaluation of the role of Indian germplasm as center of melon diversification based on genotyping-by-sequencing analysis. BMC Genomics. 20:1-13. https://doi.org/10.1186/s12864-019-5784-0S11320Munger HM, Robinson RW. Nomenclature of Cucumis melo L. Cucurbit Genet Coop Rep. 1991;14:43–4.Pitrat M, Hanelt P, Hammer K. Some comments on infraspecific classification of cultivars of melon. Proc Cucurbitaceae. 2000;2000(510):29–36.Pitrat M. Melon genetic resources: phenotypic diversity and horticultural taxonomy. In: Grumet R, Katzir N, editors. Genetics and genomics of the Cucurbitaceae. New York: J Garcia-Mas Springer; 2017. p. 25–60.Stepansky A, Kovalski I, Perl-Treves R. Intraspecific classification of melons (Cucumis melo L.) in view of their phenotypic and molecular variation. Plant Syst Evol. 1999;217(3–4):313–32.Monforte AJ, Garcia-Mas J, Arus P, Minch E. Genetic variability in melon based on microsatellite variation. Plant Breed. 2003;122(2):153–7.Esteras C, Formisano G, Roig C, Diaz A, Blanca J, Garcia-Mas J, Gomez-Guillamon ML, Lopez-Sese AI, Lazaro A, Monforte AJ, et al. SNP genotyping in melons: genetic variation, population structure, and linkage disequilibrium. Theor Appl Genet. 2013;126(5):1285–303.Sebastian P, Schaefer H, Telford IRH, Renner SS. Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia. Proc Natl Acad Sci U S A. 2010;107(32):14269–73.Newton C. Growing, gathering and offering: predynastic plant economy at Adaïma (upper Egypt). In: R. Cappers Groningen Institute of Archaeology, editor. Fields of change: progress in African archaeobotany; 2007. p. 139–55.Paris HS. Overview of the origins and history of the five major cucurbit crops: issues for ancient DNA analysis of archaeological specimens. Veg Hist Archaeobotany. 2016;25(4):405–14.Sabato D, Esteras C, Oscar G, Peña-Chocarro L, Leida C, Ucchesu M, Usai A, Bacchetta G, Pico B. Molecular and morphological characterisation of the oldest Cucumis melo L. seeds found in the Western Mediterranean Basin. Archaeol. Anthropol. Sci. 2017;11(3):789–810.Serres-Giardi L, Dogimont C. How microsatellite diversity helps to understand the domestication history of melon. In: Cucurbitaceae 2012: proceedings of the Xth Eucarpia meeting on genetics and breeding of Cucurbitaceae; 2012. p. 254–63.Endl J, Achigan-Dako EG, Pandey AK, Monforte AJ, Pico B, Schaefer H. Repeated domestication of melon (Cucumis melo) in Africa and Asia and a new close relative from India. Am J Bot. 2018;105(10):1662–71.Dhillon NPS, Ranjana R, Singh K, Eduardo I, Monforte AJ, Pitrat M, Dhillon NK, Singh PP. Diversity among landraces of Indian snapmelon (Cucumis melo var. momordica). Genet Resour Crop Evol. 2007;54(6):1267–83.Dhillon NPS, Singh J, Fergany M, Monforte AJ, Sureja K. Phenotypic and molecular diversity among landraces of snapmelon (Cucumis melo var. momordica) adapted to the hot and humid tropics of eastern India. Plant Genet Resour. 2009;7(3):291–300.Fergany M, Kaur B, Monforte AJ, Pitrat M, Rys C, Lecoq H, Dhillon NPS, Dhaliwal SS. Variation in melon (Cucumis melo) landraces adapted to the humid tropics of southern India. Genet Resour Crop Evol. 2011;58(2):225–43.Roy A, Bal SS, Fergany M, Kaur S, Singh H, Malik AA, Singh J, Monforte AJ, Dhillon NPS. Wild melon diversity in India (Punjab state). Genet Resour Crop Evol. 2012;59(5):755–67.Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011;6(5):e19379.Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet. 2011;12(7):499–510.Nimmakayala P, Tomason YR, Abburi VL, Alvarado A, Saminathan T, Vajja VG, Salazar G, Panicker GK, Levi A, Wechter WP, et al. Genome-wide differentiation of various melon horticultural groups for use in GWAS for fruit firmness and construction of a high resolution genetic map. Front Plant Sci. 2016;7:1437.Gur A, Tzuri G, Meir A, Sa'ar U, Portnoy V, Katzir N, Schaffer AA, Li L, Burger J, Tadmor Y. Genome-wide linkage-disequilibrium mapping to the candidate gene level in melon (Cucumis melo). Sci Rep. 2017;7:9770.Pavan S, Marcotrigiano AR, Ciani E, Mazzeo R, Zonno V, Ruggieri V, Lotti C, Ricciardi L. Genotyping-by-sequencing of a melon (Cucumis melo L.) germplasm collection from a secondary center of diversity highlights patterns of genetic variation and genomic features of different gene pools. BMC Genomics. 2017;18:59.Deleu W, Esteras C, Roig C, González-To M, Fernández-Silva I, Gonzalez-Ibeas D, Blanca J, Aranda MA, Arús P, Nuez F, Monforte AJ, Picó M, Garcia-Mas J. A set of EST-SNPs for map saturation and cultivar identification in melon. BMC Plant Biology. 2009;9(1):90.Leida C, Moser C, Esteras C, Sulpice R, Lunn JE, de Langen F, Monforte AJ, Pico B. Variability of candidate genes, genetic structure and association with sugar accumulation and climacteric behavior in a broad germplasm collection of melon (Cucumis melo L.). BMC Genet. 2015;16:28.Qi J, Liu X, Shen D, Miao H, Xie B, Li X, Zeng P, Wang S, Shang Y, Gu X, et al. A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat Genet. 2013;45(12):1510–U1149.Wang Y-L, Gao L-Y, Yang S-Y, Xu Y-B, Zhu H-Y, Yang L-M, Li Q, Hu J-B, Sun S-R, Ma C-S. Molecular diversity and population structure of oriental thin-skinned melons, Cucumis melo subsp agrestis, revealed by a set of core SSR markers. Sci Hortic. 2018;229:59–64.Zhang Y, Fan X, Aierken Y, Ma X, Yi H, Wu M. Genetic diversity of melon landraces (Cucumis melo L.) in the Xinjiang Uygur autonomous region on the basis of simple sequence repeat markers. Genet Resour Crop Evol. 2017;64(5):1023–35.Omari S, Kamenir Y, Benichou JIC, Pariente S, Sela H, Perl-Treves R. Landraces of snake melon, an ancient middle eastern crop, reveal extensive morphological and DNA diversity for potential genetic improvement. BMC Genet. 2018;19:34.Tomason Y, Nimmakayala P, Levi A, Reddy UK. Map-based molecular diversity, linkage disequilibrium and association mapping of fruit traits in melon. Mol Breed. 2013;31(4):829–41.Vegas J, Garcia-Mas J, Monforte AJ. Interaction between QTLs induces an advance in ethylene biosynthesis during melon fruit ripening. Theor Appl Genet. 2013;126(6):1531–44.Rios P, Argyris J, Vegas J, Leida C, Kenigswald M, Tzuri G, Troadec C, Bendahmane A, Katzir N, Pico B, et al. ETHQV6.3 is involved in melon climacteric fruit ripening and is encoded by a NAC domain transcription factor. Plant J. 2017;91(4):671–83.Moreno E, Obando JM, Dos-Santos N, Fernandez-Trujillo JP, Monforte AJ, Garcia-Mas J. Candidate genes and QTLs for fruit ripening and softening in melon. Theor Appl Genet. 2008;116(4):589–602.Argyris JM, Ruiz-Herrera A, Madriz-Masis P, Sanseverino W, Morata J, Pujol M, Ramos-Onsins SE, Garcia-Mas J. Use of targeted SNP selection for an improved anchoring of the melon (Cucumis melo L.) scaffold genome assembly. BMC Genomics. 2015;16:4.Comadran J, Ramsay L, MacKenzie K, Hayes P, Close TJ, Muehlbauer G, Stein N, Waugh R. Patterns of polymorphism and linkage disequilibrium in cultivated barley. Theor Appl Genet. 2011;122(3):523–31.Vos PG, Paulo MJ, Voorrips RE, Visser RGF, van Eck HJ, van Eeuwijk FA. Evaluation of LD decay and various LD-decay estimators in simulated and SNP-array data of tetraploid potato. Theor Appl Genet. 2017;130(1):123–35.Ruggieri V, Francese G, Sacco A, D'Alessandro A, Rigano MM, Parisi M, Milone M, Cardi T, Mennella G, Barone A. An association mapping approach to identify favourable alleles for tomato fruit quality breeding. BMC Plant Biol. 2014;14:337.Bauchet G, Grenier S, Samson N, Bonnet J, Grivet L, Causse M. Use of modern tomato breeding germplasm for deciphering the genetic control of agronomical traits by genome wide association study. Theor Appl Genet. 2017;130(5):875–89.Dhillon NPS, Monforte AJ, Pitrat M, Pandey S, Singh PK, et al. Melon landraces of India: contributions and importance. Plant Breeding Rev. 2012;35:85–150.Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, Gonzalez VM, Henaff E, Camara F, Cozzuto L, Lowy E, et al. The genome of melon (Cucumis melo L.). Proc Natl Acad Sci U S A. 2012;109(29):11872–7.Yoo J, Lee Y, Kim Y, Rha SY, Kim Y. SNP analyzer 2.0: a web-based integrated workbench for linkage disequilibrium analysis and association analysis. BMC Bioinf. 2008;9:290.Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23(19):2633–5.Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155(2):945–59.Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14(8):2611–20.Excoffier L, Laval G, Schneider S. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinforma. 2005;1:47–50.Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population-structure. Evolution. 1984;38(6):1358–70.Peltier J. LOESS utility for excel. Peltier Tech Blog. http://peltiertech.com/WordPress/loess-smoothing-in-excel . 2009

    Tolerance to ToLCNDV in Cucurbita spp

    Full text link
    [EN] Tomato leaf curl New Delhi virus (ToLCNDV) is a bipartite begomovirus (Geminiviridae) firstly reported in India and neighboring countries. A severe outbreak of ToLCNDV in Zucchini (Cucurbita pepo) occurred in southern Spain in 2012. Mechanical inoculation and natural infection with Bemisia tabaci, in Almeria, were used to screen part of the COMAV's Cucurbita core collection. The tolerance was assessed by symptomatology and by a PCR-based diagnostic method that allows the detection of the two viral components in a single reaction. Mechanical transmission of ToLCNDV was confirmed in all the species. Severe symptoms were found 30 and 35 days after mechanical and natural inoculation, respectively, in C. pepo, in all accessions belonging to the Zucchini morphotype and to other morphotypes of the subsp. pepo, subsp. ovifera and even in the wild relative C. fraterna. Cucurbita maxima and C. ficifolia were also highly susceptible. The only species showing tolerance was C. moschata. Instead of curling, which was typically observed in most Cucurbita species, in C. moschata we observed mosaic and mottling, which suggest a differential response of this species. Under natural infection, a few C. moschata accessions remained asymptomatic and no virus was detected in the plant apex. Under mechanical inoculation, ToLCNDV symptoms were mild and delayed in these accessions and they were PCR positive. Some of the more tolerant accessions came from India.This work was supported by Project E_RTAE2013-00020-C04-03 from the Spanish Instituto Nacional de Investigaciones Agrarias (INIA) cofunded with FEDER funds.Sáez-Sánchez, C.; Martínez-Martínez, C.; Ferriol Molina, M.; Manzano, S.; Jamilena, M.; López Del Rincón, C.; Picó Sirvent, MB. (2017). Tolerance to ToLCNDV in Cucurbita spp. Acta Horticulturae. (1151):31-35. https://doi.org/10.17660/ActaHortic.2017.1151.6S3135115

    Simulation of gauge transformations on systems of ultracold atoms

    Full text link
    We show that gauge transformations can be simulated on systems of ultracold atoms. We discuss observables that are invariant under these gauge transformations and compute them using a tensor network ansatz that escapes the phase problem. We determine that the Mott-insulator-to-superfluid critical point is monotonically shifted as the induced magnetic flux increases. This result is stable against the inclusion of a small amount of entanglement in the variational ansatz.Comment: 14 pages, 6 figure
    • …
    corecore