6 research outputs found

    A cryptic variation in a member of the Ovate Family Proteins is underlying the melon fruit shape QTL fsqs8.1

    Get PDF
    Melon cultivars have a wide range of fruit morphologies. Quantitative trait loci (QTL) have been identifed underlying such diversity. This research focuses on the fruit shape QTL fsqs8.1, previously detected in a cross between the accession PI 124112 (CALC, producing elongated fruit) and the cultivar ‘Piel de Sapo’ (PS, producing oval fruit). The CALC fsqs8.1 allele induced round fruit shape, being responsible for the transgressive segregation for this trait observed in that population. In fact, the introgression line CALC8-1, carrying the fsqs8.1 locus from CALC into the PS genetic background, produced perfect round fruit. Following a map-based cloning approach, we found that the gene underlying fsqs8.1 is a member of the Ovate Family Proteins (OFP), CmOFP13, likely a homologue of AtOFP1 and SlOFP20 from Arabidopsis thaliana and tomato, respectively. The induction of the round shape was due to the higher expression of the CALC allele at the early ovary development stage. The fsqs8.1 locus showed an important structural variation, being CmOFP13 surrounded by two deletions in the CALC genome. The deletions are present at very low frequency in melon germplasm. Deletions and single nucleotide polymorphisms in the fsqs8.1 locus could not be not associated with variation in fruit shape among diferent melon accessions, what indicates that other genetic factors should be involved to induce the CALC fsqs8.1 allele efects. Therefore, fsqs8.1 is an example of a cryptic variation that alters gene expression, likely due to structural variation, resulting in phenotypic changes in melon fruit morphology.info:eu-repo/semantics/publishedVersio

    Clinical and Pathological Characterization of Lynch-Like Syndrome

    Get PDF
    Background & aims: Lynch syndrome is characterized by DNA mismatch repair (MMR) deficiency. Some patients with suspected Lynch syndrome have DNA MMR deficiencies but no detectable mutations in genes that encode MMR proteins-this is called Lynch-like syndrome (LLS). There is no consensus on management of patients with LLS. We collected data from a large series of patients with LLS to identify clinical and pathology features. Methods: We collected data from a nationwide-registry of patients with colorectal cancer (CRC) in Spain. We identified patients whose colorectal tumors had loss of MSH2, MSH6, PMS2, or MLH1 (based on immunohistochemistry), without the mutation encoding V600E in BRAF (detected by real-time PCR), and/or no methylation at MLH1 (determined by methylation-specific multiplex ligation-dependent probe amplification), and no pathogenic mutations in MMR genes, BRAF, or EPCAM (determined by DNA sequencing). These patients were considered to have LLS. We collected data on demographic, clinical, and pathology features and family history of neoplasms. The χ2 test was used to analyze the association between qualitative variables, followed by the Fisher exact test and the Student t test or the Mann-Whitney test for quantitative variables. Results: We identified 160 patients with LLS; their mean age at diagnosis of CRC was 55 years and 66 patients were female (41%). The Amsterdam I and II criteria for Lynch syndrome were fulfilled by 11% of cases and the revised Bethesda guideline criteria by 65% of cases. Of the patients with LLS, 24% were identified in universal screening. There were no proportional differences in sex, indication for colonoscopy, immunohistochemistry, pathology findings, or personal history of CRC or other Lynch syndrome-related tumors between patients who met the Amsterdam and/or Bethesda criteria for Lynch syndrome and patients identified in universal screening for Lynch syndrome, without a family history of CRC. Conclusions: Patients with LLS have homogeneous clinical, demographic, and pathology characteristics, regardless of family history of CRC

    A cryptic variation in a member of the Ovate Family Proteins is underlying the melon fruit shape QTL fsqs8.1

    Get PDF
    Key message: The gene underlying the melon fruit shape QTL fsqs8.1 is a member of the Ovate Family Proteins. Variation in fruit morphology is caused by changes in gene expression likely due to a cryptic structural variation in this locus. Abstract: Melon cultivars have a wide range of fruit morphologies. Quantitative trait loci (QTL) have been identified underlying such diversity. This research focuses on the fruit shape QTL fsqs8.1, previously detected in a cross between the accession PI 124112 (CALC, producing elongated fruit) and the cultivar 'Piel de Sapo' (PS, producing oval fruit). The CALC fsqs8.1 allele induced round fruit shape, being responsible for the transgressive segregation for this trait observed in that population. In fact, the introgression line CALC8-1, carrying the fsqs8.1 locus from CALC into the PS genetic background, produced perfect round fruit. Following a map-based cloning approach, we found that the gene underlying fsqs8.1 is a member of the Ovate Family Proteins (OFP), CmOFP13, likely a homologue of AtOFP1 and SlOFP20 from Arabidopsis thaliana and tomato, respectively. The induction of the round shape was due to the higher expression of the CALC allele at the early ovary development stage. The fsqs8.1 locus showed an important structural variation, being CmOFP13 surrounded by two deletions in the CALC genome. The deletions are present at very low frequency in melon germplasm. Deletions and single nucleotide polymorphisms in the fsqs8.1 locus could not be not associated with variation in fruit shape among different melon accessions, what indicates that other genetic factors should be involved to induce the CALC fsqs8.1 allele effects. Therefore, fsqs8.1 is an example of a cryptic variation that alters gene expression, likely due to structural variation, resulting in phenotypic changes in melon fruit morphology

    Quality of Colonoscopy Is Associated With Adenoma Detection and Postcolonoscopy Colorectal Cancer Prevention in Lynch Syndrome

    No full text
    Background & Aims: Colonoscopy reduces colorectal cancer (CRC) incidence and mortality in Lynch syndrome (LS) carriers. However, a high incidence of postcolonoscopy CRC (PCCRC) has been reported. Colonoscopy is highly dependent on endoscopist skill and is subject to quality variability. We aimed to evaluate the impact of key colonoscopy quality indicators on adenoma detection and prevention of PCCRC in LS. Methods: We conducted a multicenter study focused on LS carriers without previous CRC undergoing colonoscopy surveillance (n = 893). Incident colorectal neoplasia during surveillance and quality indicators of all colonoscopies were analyzed. We performed an emulated target trial comparing the results from the first and second surveillance colonoscopies to assess the effect of colonoscopy quality indicators on adenoma detection and PCCRC incidence. Risk analyses were conducted using a multivariable logistic regression model. Results: The 10-year cumulative incidence of adenoma and PCCRC was 60.6% (95% CI, 55.5%–65.2%) and 7.9% (95% CI, 5.2%–10.6%), respectively. Adequate bowel preparation (odds ratio [OR], 2.07; 95% CI, 1.06–4.3), complete colonoscopies (20% vs 0%; P =.01), and pan-chromoendoscopy use (OR, 2.14; 95% CI, 1.15–3.95) were associated with significant improvement in adenoma detection. PCCRC risk was significantly lower when colonoscopies were performed during a time interval of less than every 3 years (OR, 0.35; 95% CI, 0.14–0.97). We observed a consistent but not significant reduction in PCCRC risk for a previous complete examination (OR, 0.16; 95% CI, 0.03–1.28), adequate bowel preparation (OR, 0.64; 95% CI, 0.17–3.24), or previous use of high-definition colonoscopy (OR, 0.37; 95% CI, 0.02–2.33). Conclusions: Complete colonoscopies with adequate bowel preparation and chromoendoscopy use are associated with improved adenoma detection, while surveillance intervals of less than 3 years are associated with a reduction of PCCRC incidence. In LS, high-quality colonoscopy surveillance is of utmost importance for CRC prevention
    corecore