2,268 research outputs found

    Effect of Scatterering on Coherent Anti-Stokes Raman Scattering (CARS) signals

    Get PDF
    We develop a computational framework to examine the factors responsible for scattering-induced distortions of coherent anti-Stokes Raman scattering (CARS) signals in turbid samples. We apply the Huygens-Fresnel Wave-based Electric Field Superposition (HF-WEFS) method combined with the radiating dipole approximation to compute the effects of scattering-induced distortions of focal excitation fields on the far-field CARS signal. We analyze the effect of spherical scatterers, placed in the vicinity of the focal volume, on the CARS signal emitted by different objects (2{\mu}m diameter solid sphere, 2{\mu}m diameter myelin cylinder and 2{\mu}m diameter myelin tube). We find that distortions in the CARS signals arise not only from attenuation of the focal field but also from scattering-induced changes in the spatial phase that modifies the angular distribution of the CARS emission. Our simulations further show that CARS signal attenuation can be minimized by using a high numerical aperture condenser. Moreover, unlike the CARS intensity image, CARS images formed by taking the ratio of CARS signals obtained using x- and y-polarized input fields is relatively insensitive to the effects of spherical scatterers. Our computational framework provide a mechanistic approach to characterizing scattering-induced distortions in coherent imaging of turbid media and may inspire bottom-up approaches for adaptive optical methods for image correction.Comment: 15 pages, 7 figure

    Many-body hierarchy of dissipative timescales in a quantum computer

    Get PDF
    We show that current noisy quantum computers are ideal platforms for the simulation of quantum many-body dynamics in generic open systems. We demonstrate this using the IBM Quantum Computer as an experimental platform for confirming the theoretical prediction from Wang et al., [Phys. Rev. Lett. 124, 100604 (2020)] of an emergent hierarchy of relaxation timescales of many-body observables involving different numbers of qubits. Using different protocols, we leverage the intrinsic dissipation of the machine responsible for gate errors, to implement a quantum simulation of generic (i.e., structureless) local dissipative interactions

    Rabi Regime of Current Rectification in Solids

    Get PDF
    We investigate rectified currents in response to oscillating electric fields in systems lacking inversion and time-reversal symmetries. These currents, in second-order perturbation theory, are inversely proportional to the relaxation rate, and, therefore, naively diverge in the ideal clean limit. Employing a combination of the nonequilibrium Green function technique and Floquet theory, we show that this is an artifact of perturbation theory, and that there is a well-defined periodic steady state akin to Rabi oscillations leading to finite rectified currents in the limit of weak coupling to a thermal bath. In this Rabi regime the rectified current scales as the square root of the radiation intensity, in contrast with the linear scaling of the perturbative regime, allowing us to readily diagnose it in experiments. More generally, our description provides a smooth interpolation from the ideal periodic Gibbs ensemble describing the Rabi oscillations of a closed system to the perturbative regime of rapid relaxation due to strong coupling to a thermal bath

    Non-equilibrium hysteresis and spin relaxation in the mixed-anisotropy dipolar coupled spin-glass LiHo0.5_{0.5}Er0.5_{0.5}F4_{4}

    Get PDF
    We present a study of the model spin-glass LiHo0.5_{0.5}Er0.5_{0.5}F4_4 using simultaneous AC susceptibility, magnetization and magnetocaloric effect measurements along with small angle neutron scattering (SANS) at sub-Kelvin temperatures. All measured bulk quantities reveal hysteretic behavior when the field is applied along the crystallographic c axis. Furthermore avalanche-like relaxation is observed in a static field after ramping from the zero-field-cooled state up to 200300200 - 300 Oe. SANS measurements are employed to track the microscopic spin reconfiguration throughout both the hysteresis loop and the related relaxation. Comparing the SANS data to inhomogeneous mean-field calculations performed on a box of one million unit cells provides a real-space picture of the spin configuration. We discover that the avalanche is being driven by released Zeeman energy, which heats the sample and creates positive feedback, continuing the avalanche. The combination of SANS and mean-field simulations reveal that the conventional distribution of cluster sizes is replaced by one with a depletion of intermediate cluster sizes for much of the hysteresis loop.Comment: 6 pages, 4 figure

    Comparison between adenosine triphosphate bioluminescence and aerobic colony count to assess surface sanitation in the hospital environment

    Get PDF
    Background: Adenosine triphosphate bioluminescence produced by the firefly luciferase has been successfully introduced to verify cleaning procedures in the food industry according to the Hazard Analysis Critical Control Point program. Our aim was to evaluate the reliability of bioluminescence as a tool to monitor the effectiveness of sanitation in healthcare settings, in comparison with the microbiological gold standard. Methods: 614 surfaces of various material were randomly sampled in Policlinico University Hospital units in Palermo, Italy, to detect adenosine triphosphate bioluminescence and aerobic colony count. Linear regression model and Pearson correlation coefficient were used to estimate the relationship between the two variables of the study. Results: Aerobic colony count median was 1.71 colony forming units/cm2 (interquartile range = 3.8), whereas adenosine triphosphate median was 59.9 relative light units/cm2 (interquartile range = 128.3). Pearson coefficient R2 was 0.09. Sensitivity and specificity of bioluminescence test with respect to microbiology were 46% and 71%, whereas positive predictive value and negative predictive value were 53% and 65%, respectively. Conclusion: According to our results, there seemed to be no linear correlation between aerobic colony count and adenosine triphosphate values, suggesting that current bioluminescence technology has not any proportional relationships with culturable microbes contaminating environmental surfaces in health-care settings

    Properties of electrons scattered on a strong plane electromagnetic wave with a linear polarization: classical treatment

    Get PDF
    The relations among the components of the exit momenta of ultrarelativistic electrons scattered on a strong electromagnetic wave of a low (optical) frequency and linear polarization are established using the exact solutions to the equations of motion with radiation reaction included (the Landau-Lifshitz equation). It is found that the momentum components of the electrons traversed the electromagnetic wave depend weakly on the initial values of the momenta. These electrons are mostly scattered at the small angles to the direction of propagation of the electromagnetic wave. The maximum Lorentz factor of the electrons crossed the electromagnetic wave is proportional to the work done by the electromagnetic field and is independent of the initial momenta. The momentum component parallel to the electric field strength vector of the electromagnetic wave is determined only by the diameter of the laser beam measured in the units of the classical electron radius. As for the reflected electrons, they for the most part lose the energy, but remain relativistic. There is a reflection law for these electrons that relates the incident and the reflection angles and is independent of any parameters.Comment: 12 pp, 3 fig

    The staging of gastritis with the olga system in the italian setting. histological features and gastric cancer risk

    Get PDF
    BACKGROUND: Recently OLGA (Operative Link on Gastritis Assessment) classification has been proposed to identify high-risk forms of gastritis that can evolve in gastric cancer (stages III and IV). Helicobacter pylori infection and age older than 40 have been considered as independent risk factor for high-risk OLGA stages

    Fractional-valued modal logic

    Get PDF

    Delbr\"uck scattering in combined Coulomb and laser fields

    Full text link
    We study Delbr\"uck scattering in a Coulomb field in the presence of a laser field. The amplitudes are calculated in the Born approximation with respect to the Coulomb field and exactly in the parameters of the laser field having arbitrary strength, spectral content and polarization. The case of high energy initial photon energy is investigated in detail for a monochromatic circularly polarized laser field. It is shown that the angular distribution of the process substantially differs from that for Delbr\"uck scattering in a pure Coulomb field. The value of the cross section under discussion may exceed the latter at realistic laser parameters that essentially simplify the possibility of the experimental observation of the phenomenon. The effect of high order terms in the quantum intensity parameter χ\chi of the laser field is found to be very important already at relatively small χ\chi.Comment: 21 pages, 4 figure

    Photon splitting in a laser field

    Full text link
    Photon splitting due to vacuum polarization in a laser field is considered. Using an operator technique, we derive the amplitudes for arbitrary strength, spectral content and polarization of the laser field. The case of a monochromatic circularly polarized laser field is studied in detail and the amplitudes are obtained as three-fold integrals. The asymptotic behavior of the amplitudes for various limits of interest are investigated also in the case of a linearly polarized laser field. Using the obtained results, the possibility of experimental observation of the process is discussed.Comment: 31 pages, 4 figure
    corecore