37 research outputs found

    Gastric LTi cells promote lymphoid follicle formation but are limited by IRAK-M and do not alter microbial growth.

    Get PDF
    Lymphoid tissue inducer (LTi) cells are activated by accessory cell IL-23, and promote lymphoid tissue genesis and antibacterial peptide production by the mucosal epithelium. We investigated the role of LTi cells in the gastric mucosa in the context of microbial infection. Mice deficient in IRAK-M, a negative regulator of TLR signaling, were investigated for increased LTi cell activity, and antibody mediated LTi cell depletion was used to analyze LTi cell dependent antimicrobial activity. H. pylori infected IRAK-M deficient mice developed increased gastric IL-17 and lymphoid follicles compared to wild type mice. LTi cells were present in naive and infected mice, with increased numbers in IRAK-M deficient mice by two weeks. Helicobacter and Candida infection of LTi cell depleted rag1(-/-) mice demonstrated LTi-dependent increases in calprotectin but not RegIII proteins. However, pathogen and commensal microbiota populations remained unchanged in the presence or absence of LTi cell function. These data demonstrate LTi cells are present in the stomach and promote lymphoid follicle formation in response to infection, but are limited by IRAK-M expression. Additionally, LTi cell mediated antimicrobial peptide production at the gastric epithelium is less efficacious at protecting against microbial pathogens than has been reported for other tissues

    A Functional NQO1 609C>T Polymorphism and Risk of Gastrointestinal Cancers: A Meta-Analysis

    Get PDF
    Background: The functional polymorphism (rs1800566) in the NQO1 gene, a 609C.T substitution, leading to proline-toserine amino-acid and enzyme activity changes, has been implicated in cancer risk, but individually published studies showed inconclusive results. Methodology/Principal Findings: We performed a meta-analysis of 20 publications with a total of 5,491 cases and 5,917 controls, mainly on gastrointestinal (GI) cancers. We summarized the data on the association between the NQO1 609C.T polymorphism and risk of GI cancers and performed subgroup analyses by ethnicity, cancer site, and study quality. We found that the variant CT heterozygous and CT/TT genotypes of the NQO1 609 C.T polymorphism were associated with a modestly increased risk of GI cancers (CT vs. CC: OR = 1.10, 95 % CI = 1.01 – 1.19, P heterogeneity = 0.27, I 2 = 0.15; CT/TT vs. CC: OR = 1.11, 95%CI = 1.02 – 1.20, Pheterogeneity = 0.14; I 2 = 0.27). Following further stratified analyses, the increased risk was only observed in subgroups of Caucasians, colorectal cancer in Caucasians, and high quality studies. Conclusions: This meta-analysis suggests that the NQO1 609T allele is a low-penetrance risk factor for GI cancers. Although the effect on GI cancers may be modified by ethnicity and cancer sites, small sample seizes of the subgroup analyse

    Nature meets nurture: molecular genetics of gastric cancer

    Get PDF
    The immensity of genes and molecules implicated in gastric carcinogenesis is overwhelming and the relevant importance of some of these molecules is too often unclear. This review serves to bring us up-to-date with the latest findings as well as to look at the larger picture in terms of how to tackle the problem of solving this multi-piece puzzle. In this review, the environmental nurturing of intestinal cancer is discussed, beginning with epidemiology (known causative factors for inducing molecular change), an update of H. pylori research, including the role of inflammation and stem cells in premalignant lesions. The role of E-cadherin in the nature (genotype) of diffuse gastric cancer is highlighted, and finally the ever growing discipline of SNP analysis (including IL1B) is discussed

    Integrated genomic characterization of oesophageal carcinoma

    Get PDF
    Oesophageal cancers are prominent worldwide; however, there are few targeted therapies and survival rates for these cancers remain dismal. Here we performed a comprehensive molecular analysis of 164 carcinomas of the oesophagus derived from Western and Eastern populations. Beyond known histopathological and epidemiologic distinctions, molecular features differentiated oesophageal squamous cell carcinomas from oesophageal adenocarcinomas. Oesophageal squamous cell carcinomas resembled squamous carcinomas of other organs more than they did oesophageal adenocarcinomas. Our analyses identified three molecular subclasses of oesophageal squamous cell carcinomas, but none showed evidence for an aetiological role of human papillomavirus. Squamous cell carcinomas showed frequent genomic amplifications of CCND1 and SOX2 and/or TP63, whereas ERBB2, VEGFA and GATA4 and GATA6 were more commonly amplified in adenocarcinomas. Oesophageal adenocarcinomas strongly resembled the chromosomally unstable variant of gastric adenocarcinoma, suggesting that these cancers could be considered a single disease entity. However, some molecular features, including DNA hypermethylation, occurred disproportionally in oesophageal adenocarcinomas. These data provide a framework to facilitate more rational categorization of these tumours and a foundation for new therapies.ope
    corecore