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Abstract Gastric cancer is one of the most common malig-
nant diseases and has one of the highest mortality rates world-
wide. Its molecular mechanisms are poorly understood.
Recently, the functions of non-coding RNAs (ncRNAs) in
gastric cancer have attracted wide attention. Although the ex-
pression levels of various ncRNAs are different, they may
work together in a network and contribute to gastric carcino-
genesis by altering the expression of oncogenes or tumor sup-
pressor genes. They affect the cell cycle, apoptosis, motility,
invasion, and metastasis. Dysregulated microRNAs
(miRNAs) and long non-coding RNAs (lncRNAs), including
miR-21, miR-106, H19, and ANRIL, directly or indirectly
regulate carcinogenic factors or signaling pathways such as
PTEN, CDK, caspase, E-cadherin, Akt, and P53. Greater rec-
ognition of the roles of miRNAs and lncRNAs in gastric car-
cinogenesis can provide new insight into the mechanisms of
tumor development and identify targets for anticancer drug
development.
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Mechanisms

Introduction

Gastric cancer (GC) is the fourth most frequent malignancy,
with most patients being diagnosed in advanced stages with

limited treatment options. GC continues to present a major
clinical challenge [1] and ranks as the second leading cause
of cancer-related death [2]. The development of GC is a com-
plex and multistep process. It results from a combination of
environmental factors and the accumulation of generalized
and specific genetic alterations. Predisposing factors include
Helicobacter pylori (H. pylori) infection, high salt intake,
smoking, and familial genetic components [1].

Non-coding RNAs (ncRNAs) are generally divided into
three major classes based on the following sizes : (1) short
ncRNAs, including the much-studied microRNAs (miRNAs),
which mediate posttranscriptional gene silencing, and Piwi-
interacting RNAs (piRNAs); (2) mid-size ncRNAs, such as
small nucleolar RNAs (snoRNAs); and (3) long non-coding
RNAs (lncRNAs), which act as signals, guides, or scaffolds to
chromatin to regulate the expression of target genes [3].

Over the past few years, increasing studies have demon-
strated that miRNAs [4] and lncRNAs [5] could function as
oncogenes or tumor suppressor genes. In GC, many miRNAs
and lncRNAs are dysregulated and can regulate gene expres-
sion and biological functions cooperatively. Some play key
roles in cellular processes including the cell cycle, apoptosis,
and metastasis [2, 6].

ncRNAs associated with the cell cycle in GC

The cell cycle includes four phases: (1) G1 (Gap1), (2) S
(DNA synthesis), (3) G2 (Gap2), and (4) M (mitosis).
Initiation of each phase requires Cyclin/Cyclin-dependent ki-
nase (CDK) complexes, which are assisted by several protein
kinases [7]. In late G1, Cyclin D-CDK4/6 activity begins to
decrease, and Cyclin E-CDK2 activity rises. Cyclin E-CDK2
can increase E2F by inhibiting Rb (retinoblastoma), which
hampers E2F, and upregulating a number of targets important
for S-phase entry and progression. During early S-phase, with
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the decomposition of Cyclin E, Cyclin A complexes with
CDK2 to drive progression through S-phase into G2. From
mid-G2 onwards, CDK2 activity decreases and Cyclin A as-
sociates with CDK1. Finally, to enter M-phase, Cyclin B com-
plexes with CDK1 and phosphorylates their targets. In late M-
phase, following cytokinesis, Cyclin B is degraded, indicating
the start of the next round of the cycle [8]. CDK activity is
modulated byCDKs including CAK (a complex of CDK7 and
Cyclin H) by CDK phosphatases (CDC25 phosphatases) that
activate the Cyclin B/CDK1 complex to promote mitotic en-
try, and by CDK inhibitors (CDKIs) including the Ink4
(p15Ink4b, p16Ink4a, p18Ink4c, and p19Ink4d) and Cip/Kip
(p21Cip1, p27Kip1, and p57Kip2) families [9]. As p53
upregulates p21Cip1, p53-mediated tumor suppressor path-
ways also block the cell cycle [8]. Myc can both activate
and repress the expression of Cyclin and CDK genes [9].
Interestingly, in GC, miRNAs and lncRNAs are associated
with almost all the cell cycle regulatory sites. (Figs. 1 and 2)

ncRNAs affect the Akt pathway in the cell cycle

Effect upstream of the Akt axis

The Akt-FOXO1-p21Cip1/p27Kip1 axis plays an important role
in the cell cycle (Fig. 1). Akt activation leads to the inhibition
of FOXO1 and, consequently, downregulates the expression
of p21Cip1 and p27Kip1. Decreased miR-124 in GC can inhibit
the cell cycle by downregulating SPHK1, which triggers this
axis [10]. Another important cell cycle signaling pathway is

the PI3K-Akt-p53-Cyclin D1/cdc25A axis, which is induced
by PTEN deficiency. As the intermediate link, miR-365 is
indirectly suppressed by Akt by decreasing p53 abundance.
In turn, reduced miR-365 leads to the upregulation of Cyclin
D1 and cdc25A [11]. In addition to miR-124 and miR-365,
many other miRNAs and lncRNAs may influence the cell
cycle by regulating upstream components of the Akt pathway
in GC (Fig. 1). miR-21 promotes cell proliferation by
targeting PTEN [12]. PTEN downregulation promotes Akt
signaling and results in increased NF-κB [13]. In GC, both
ROS [14] and NF-κB [15] can increase the level of miR-21.
Meanwhile, miR-362 upregulation activates NF-κB signaling
by repressing CYLD [16]. In addition, nicotine enhances the
binding of NF-κB to the miR-21 promoter. The activation of
COX-2/prostaglandin E2 (PGE2) signaling in response to nic-
otine is mediated by the action of the prostaglandin E recep-
tors (EP2 and EP4), which impair nicotine-mediated NF-κB
activity [15]. Furthermore, activated NF-κB upregulates the
expression of Cox-2 [13], thus forming a complex regulatory
network among miR-21, Akt, and NF-κB in the progress of
gastric carcinogenesis. Receptor tyrosine kinases (RTKs) reg-
ulate a key initiator of phosphoinositide-3 kinase (PI3K)-Akt
through the RAS signaling pathway [17]. As an RTK, ERBB2
is upregulated and inversely correlated with miR-125a-5p ex-
pression in GC. Both ERBB2 and its primary downstream
signaling pathway through Akt are suppressed by miR-125a-
5p [18]. miR-338 reduced in GC decreases Akt phosphoryla-
tion by attenuating the expression of NRP1, a receptor for the
vascular endothelial growth factor (VEGF) isoform VEGF-

Fig 1 ncRNAs affect Akt pathway in cell cycle. MiRNAs and lncRNAs affect gastric cancer cell cycle progression. By regulating Akt pathway, onco-
ncRNAs promote gastric cancer cell growth. Conversely, tumor suppressor ncRNAs suppress the gastric cancer cell cycle
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165 [19]. Let-7a decreased in GC regulates the cell cycle by
directly downregulating RAB40C, a member of the RAS fam-
ily [20]. HOTAIR [21] is upregulated in GC and inversely
correlates with miR-331-3p. By binding miR-331-3p,
HOTAIR acts as a competing endogenous RNA (ceRNA),
thus abolishing the miRNA-induced repressive activity on
HER2, which promotes GC cell growth through the Akt path-
way [22].

Effect downstream of the Akt axis

As for the downstream of the Akt axis, other miRNAs and
lncRNAs can affect FOXO1 or p53 directly or indirectly
(Fig. 1). Li et al. suggested that in GC, the NF-κB-
dependent upregulation of miR-107 could inhibit FOXO1
protein expression and induce proliferation [23]. However,
Li et al. reported the converse result, that miR-107 might act
as a tumor suppressor by directly targeting CDK6 to block the
GC cell cycle [24]. Different from FOXO1, another member
of the FOX family, FOXM1, decreases the activity of p27Kip1.
It is negatively regulated by miR-370 and reduced by Hp
infection in GC [25]. Like the FOX family, p53 is influenced
by many ncRNAs. Tony et al. found that Hp indirectly mod-
ulated p53 and its downstream target p21 by downregulating
miR-449 [26]. miR-650 upregulation in GC targets ING4,
which is thought to enhance p53 function in gene transcription
and promote cell growth [27]. miR-181a acts as an oncomir in
GC by targeting the tumor suppressor gene ATM [28], which
increases the expression and activity of p53 [29]. TP53INP1 is
a key element in p53-mediated cell death and cell cycle arrest.
Both miR-17-5p and miR-20a are upregulated in GC and can
promote cell growth via deregulating TP53INP1 and P21.
However, miR-17-5p/20a function independently on p53.
They also inhibit p21 indirectly by increasing murine double
minute 2 (MDM2), a negative regulator of p21 [30], which is

also promoted by PI3K/Akt signaling in GC [31]. H19 [32]
and CCAT1 [33] are c-Myc-induced ncRNAs. Both can de-
crease the activity of p53 [33, 34]. Furthermore, upregulated
H19 promotes miR-675, which inhibits the tumor suppressor
runt domain transcription factor1 (RUNX1) when promoting
GC cell growth [35].

ncRNAs affect CDKIs and their downstream in cell cycle

In addition to the classical Akt pathway, many ncRNAs can
directly or indirectly regulate P27, P21, P16, P15 or their
downstream targets (Figs. 1 and 2). Sun et al. demonstrated
that upregulated miR-196a [36] could inhibit p27Kip1 expres-
sion, which prevents cell cycle progression by inhibiting
Cyclin E/CDK2 activity. And the suppressive expression of
GAS5 resulted in a decrease of P21 and an increase in E2F1
and Cyclin D1 [37] (Fig. 1). miR-212 inhibits proliferation
and increases the expression of P21Cip1 and P27Kip1 indirectly
by repressing retinoblastoma-binding protein 2 (RBP2) [38]
(Fig. 1). Both miR-200b and miR-200c are downregulated in
GC and can target DNMT3A/B directly or downregulate
DNMT1 indirectly through mediating the decrease of speci-
ficity protein 1 (Sp1) (Fig. 2). Decreased DNMTs result in
DNA hypomethylation, which is responsible for the overex-
pression of p16 [39]. Upregulated ANRIL suppresses the ex-
pression of miR-449a, p15Ink4B, and p16Ink4A. The downreg-
ulation of miR-449a releases CDK6. At the same time, the
lower expression of p15Ink4B and p16Ink4A reduces their inhib-
itory effect on CDK6 (Fig. 2). Therefore, all this abnormal
expression will promote CDK6. Increased CKD6 can inhibit
Rb, thus releasing E2F1. In turn, the released E2F1 increases
ANRIL expression, forming a positive feedback loop and con-
t inuously promoting GC cel l prol i ferat ion [40] .
Complementary to this, both miR-29 [41] and miR-206 [42]
act as tumor suppressors by targeting Cyclin D2, which

Fig 2 ncRNAs affect CDKIs and Myc pathway in cell cycle.
MiRNAs and lncRNAs affect gastr ic cancer cell cycle
progression. By regulating CDKIs and their downstream and

Myc pathway, onco-ncRNAs promote gastric cancer cell growth.
Conversely, tumor suppressor ncRNAs suppress the gastric cancer
cell cycle
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regulates the cell cycle by controlling Rb phosphorylation
levels (Fig. 2). In addition, overexpressed miR-215 [43] and
miR-27a [44] regulate Rb directly and indirectly, respectively,
via targeting prohibitin genes (Fig. 2). In addition to Cyclin
D2, Cyclin D1, which also promotes cell cycle progres-
sion by activating CDK4/6, is another important target.
Both Sp1 [45] and Sp2 [46] can increase the expression
of Cyclin D1. Qiu [45] and Zhao [46] et al. reported that
miR-145, miR-133a, and miR-133b could decrease Sp1,
and miR-638 could inhibit Sp2. In GC, Sp1 is also regu-
lated by PI3K-Akt signaling [47] (Fig. 1). Furthermore,
hypermethylation-mediated silencing of miR-9 [48] di-
rectly causes increased Cyclin D1 expression [49]. CDK
is also regulated by miRNAs. miR-195 silencing by DNA
hypermethylation negatively regulates the expression of
CDK6 by binding the CDK6 mRNA 3′-UTR [50] (Fig. 2).

ncRNAs affect the Myc pathway in the cell cycle

Myc is another important functional site in cell cycle. On one
hand, it directly induces Cyclin D or Cyclin E expression. On
the other hand, it indirectly promotes the cell cycle by
inhibiting p15INK4, p27Kip1, and p21CIP1 [51]. Interestingly,
Myc is also regulated by many ncRNAs in GC (Fig. 2). c-
Myc and eIF4E can promote each other [52]. Meanwhile,
eIF4E is increased by mTOR, which phosphorylates 4E-BP1
[53], and inhibited by miR-497 [54]. mTOR is directly
inhibited by miR-199a-3p [55] and abrogated by miR-99a/
miR-499a, which are epigenetically inhibited by ANRIL
[40]. c-Myc is a STAT3-mediated gene, which is negatively
regulated by protein inhibitor of activated signal transducer
and activator of transcription 3 (PIAS3). miR-18a indirectly
modulates c-Myc by targeting PIAS3 [56]. Suppressors of
cytokine signaling (SOCS) family proteins are important neg-
ative feedback inhibitors of JAK/STAT [57]. miR-375 [58]
can repress JAK2, and miR-19a [57] can downregulate
SOCS1. Therefore, all three miRNAs may ultimately affect
the GC cell cycle through regulating c-Myc. c-Myc also acts
as a transactivator of miR-19a/b, which inhibits MXD1 ex-
pression. In turn, downregulated MXD1 loses its inhibitory
effect on miR-19a/b and c-Myc. The direct association be-
tween miR-19a/b and the c-Myc antagonist geneMXD1 indi-
cates a positive feedback loop between the three [59].
Upregulated miR-363 promotes GC cell growth by suppress-
ing c-Myc promoter binding protein 1 (MBP-1), which initi-
ates the specific inactivation of Myc [60]. In addition to these
indirect effects, somemiRNAs regulate c-Myc directly in GC.
Both the downregulation of miR-429 [61] and miR-494 [62]
cause increased c-Myc. In addition to miRNAs, GHET1 pro-
motes the stability and expression of c-Myc by interacting
with insulin-like growth factor 2 mRNA binding protein 1
(IGF2BP1) [63].

ncRNAs associated with apoptosis in GC

Apoptosis is an intrinsic cellular suicide program. Its initiation
and progress are accurately regulated by upstream regulators
and downstream effectors. Caspases are generally categorized
as initiators (caspase-2, -8, -9, -10) and effectors (caspase-3, -
6, -7). These initiators activate apoptosis through the follow-
ing three signaling pathways: (1) the death receptor pathway
(extrinsic pathway), (1) the mitochondrion pathway (intrinsic
pathway), and (3) the endoplasmic reticulum pathway [64,
65]. The extrinsic apoptotic program contains the Fas ligand/
Fas receptor and Apo3. For example, the Fas-associated death
domain protein (FADD) directly binds to the Fas death do-
main and activates caspase-8, leading to cell death [65]. For
the intrinsic pathway, the regulators and effectors are con-
trolled by counterbalancing the Bcl-2 family, including the
proapoptotic (Bax, Bak, Bok, Bim, Bid, Bad, Bmf, Bik,
BNIP3L, Noxa, Puma, and Hark) and antiapoptotic (Bcl-2,
Bcl-xL, Bcl-w, Mcl-1, and Al/Bfl-1) members [2]. These dys-
regulated apoptotic molecules can change the permeability of
the mitochondrial membrane and the release of cytochrome C
(Cyt c) and other proteins. Cyt c can raise the intracellular
quality of caspase-9 precursors and promote self-activation,
starting a caspase cascade and activating downstream
caspase-3 and caspase-7, which cause apoptosis. All these
pathways associate with each other and coordinately regulate
apoptosis [65] (Fig. 3).

ncRNAs affect apoptosis initiators

Altered expression of miRNAs can affect the progress of ap-
optosis in GC cells [2, 6]. (Fig. 3). First, we discuss how
miRNAs influence cell apoptosis by affecting apoptosis initi-
ators. In GC, many miRNAs directly modulate Bcl-2 expres-
sion. Downregulation of miR-15b, miR-16, miR-34, miR-
181b [2], miR-204 [66], and miR-449a [67] promotes GC cell
apoptosis by negatively regulating Bcl-2. Bcl-2 is also indi-
rectly regulated by miRNAs. The downregulation of PTEN
promotes the Akt signaling pathway, resulting in increased
NF-κB. Furthermore, activated NF-κB upregulates the ex-
pression of Cox-2 [13], which reduces apoptosis by promoting
Bcl-2 expression [68]. Interestingly, this chain reaction is ob-
served in GC cells and is regulated by specific miRNAs. First,
upregulated miR-21 [12] and miR-221/222 [2] can target
PTEN directly. Meanwhile, NF-κB can induce miR-21 ex-
pression [15], thus forming a positive feedback loop between
miR-21 and NF-κB. Second, the upregulation of miR-362
increases the activity and expression of NF-κB through
inhibiting CYLD expression [16]. miR-218, which is reduced
by Hp infection, inhibits NF-κB indirectly by targeting epi-
dermal growth factor receptor-coamplified and overexpressed
protein (ECOP) [69]. Finally, miR-101, which is decreased in
GC, binds to the 3′-UTR of Cox-2mRNA, and inhibits Cox-2
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expression directly [68]. In addition, miR-202-3p downregu-
lation in GC can reduce Bcl-2 by inhibiting Gli1 [70]. Other
Bcl-2 family members, such as Bax and Bid, are also regulat-
ed by miRNAs in GC. The transcription factor p53, which
localizes in the mitochondria, can interact with Bak and Bax
directly. However, this interaction blocks the interaction of
Bak and Mcl-1. These effects change the mitochondrial per-
meability, resulting in the release of apoptosis factors and
eventually leading to apoptosis [65]. In GC, many miRNAs
can control cell apoptosis by regulating p53 and its down-
stream molecules. Upregulated miR-17-5p/20a decreases the
expression of TP53INP1, thus weakening the role of p53 [30].
miR-449 reduction by Hp in GC induces apoptosis by
inhibiting SIRT1, which represses the p53 pathway [26].
Upregulated miR-23a [71] directly targets IRF1, which medi-
ates apoptosis by upregulating the expression of p53 upregu-
lated modulator of apoptosis (PUMA). However, this is p53
independent [64]. miR-150 promotes GC cell proliferation by
inhibiting EGR2, which enhances p53-mediated apoptosis

and activates the proapoptotic proteins BNIP3L and Bak [2].
In addition, downregulated miR-101 promotes Bax expres-
sion directly [68], and miR-451 increases Bid- and Bax-
mediated apoptosis by targeting macrophage migration inhib-
itory factor (MIF) [2]. Similarly, upregulated miR-25 and
miR-130b inhibit the expression of Bim directly and indirect-
ly, respectively, through decreasing RUNX3 [2].
Downregulated miR-29c [72], miR-512-5p [2], and miR-320
[73], which is inhibited by Hp, can suppress the expression of
Mcl-1. In addition to this intrinsic pathway, miR-106a upreg-
ulated in GC represses the extrinsic pathway by targeting the
3′-UTR of Fas directly [74].

ncRNAs affects apoptosis effectors

Next, we discuss the influence of miRNAs on apoptosis ef-
fectors (Fig. 3). By DNA methylation, miR-375 silencing in
GC can induce apoptosis in two ways. First, miR-375 can
inhibit the PDK1/Akt/XIAP pathway. Downstream of Akt,

Fig 3 ncRNAs associated with apoptosis in GC. MiRNAs and lncRNAs affect gastric cancer cell apoptosis. By regulating extrinsic and intrinsic
pathways, onco-ncRNAs suppress gastric cancer apoptosis. Conversely, tumor suppressor ncRNAs promote gastric cancer cell apoptosis
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XIAP inhibits apoptosis by suppressing caspase activity.
Second, miR-375 targets the 3′ UTR of 14-3-3ζ, which in-
hibits proapoptotic proteins such as Bad and JAK. Both
siPDK1 and si14-3-3ζ transfectants increased caspase-3/7 ac-
tivity [75]. In addition to miR-375, many other miRNAs can
also affect apoptosis through the Akt pathway. miR-125-5p
and miR-146a are downregulated in GC, and both regulate
Akt by directly targeting the EGFRmRNA [2]. As mentioned
above, PTEN is a negative regulator of PI3K-Akt signaling.
The miR-221/222 cluster [2] and miR-21 [12] block apoptosis
of GC cells by targeting PTENmRNA directly. miR-338 pro-
motes apoptosis and regulates the phosphorylation of Akt by
inhibiting neuropilin-1 (NRP1) [19]. Beyond these classic in-
direct ways, caspase-3, a direct effector of apoptosis, is also
activated by miRNAs. The downregulation of miR-409-3p
results in the overexpression of PHF10 in GC. PHF10 inhibits
cell apoptosis by binding to the promoter region of caspase-3
directly [76]. The miR-17-92 cluster encodes miR-18a, which
can promote STAT3 and its downstream effectors including
Myc, survivin, and Bcl-xl through inhibiting PIAS3, which
negatively regulates STAT3. Bcl-xl is anti-apoptotic, and
survivin inhibits the release of Cyt c and the level of
caspase-3 [77]. Therefore, miR-18a may block the apoptotic
process [56].

Interestingly, unlike miRNAs, HULC upregulation in GC
tissues and cell lines inhibits cell apoptosis by activating au-
tophagy, which has a dual role in cancer development [78].

ncRNAs associated with invasion and metastasis in GC

Tumor invasion and metastasis are complex and multistep
processes. Here, we discuss three aspects: (1) the alteration
of cell phenotypes including the decrease of epithelial cell
marker genes such as E-cadherin, the increase of mesenchy-
mal cell marker genes such as N-cadherin and integrin [79],
and changes in tumor cell motility and shape [80]—these con-
versions are also called epithelial-mesenchymal transition
(EMT); (2) the remodeling of the extracellular matrix
(ECM), which requires matrix metalloproteinases (MMPs)
and other proteolytic enzymes [2], and (3) the proliferation
of neovascularization, which contributes to an invasive and
metastatic tumor microenvironment [79].

EMT is induced by several signaling pathways.
Transforming growth factor beta (TGFβ) is the most potent
and most well-described inducer. Others like E-cadherin tran-
scriptional repressors also act as EMT inducers, including the
Snail, zebra (ZEB), and Twist families [81]. TGFβ1 initiates
EMT by activating either the Smad 2/3/4 trimer or non-Smad
pathways, including PI3K/Akt, RAS small GTPases, and
Wnt/β-catenin. Many of these pathways work synergistically
in EMT. For instance, TGFβ-mediated Smad3/4 promote
Snail and ZEB1/2 expression [80], and the activation of GF/

TGFβ-Ras-Akt signaling increases the expression of Snail,
Twist, Slug, and Smad [17]. The stimulation of myosin light
chain phosphorylation and actin reorganization can potentiate
TGFβ-induced EMT. β-catenin signaling, which is enhanced
by TGFβ [80] and inhibited by Akt [17], can mediate the
binding of E-cadherin to the actin cytoskeleton and regulate
the expression of Snail and Slug [80]. It is noteworthy that
NF-κB has been identified as a key regulator of EMTas it can
induce the expression of Snail and ZEB1/2. In addition, EMT
is regulated by cytokines and integrin signaling [80].

There is no doubt that the mechanisms of tumor invasion
and metastasis are complex. Interestingly, both miRNAs [82]
and lncRNAs [5] participate in cancer metastasis in GC [2, 6].

ncRNAs associated with EMT in GC

Effect of miRNAs and lncRNAs on signaling upstream of EMT

The GF-Ras-PI3K-Akt pathway plays a key role in EMT [17].
In GC, manymiRNAs regulate EMT by affecting GFs or their
receptors and Akt signaling (Fig. 4). miR-146a [83] and miR-
7 [84] suppress EGFR. Meanwhile, miR-7 is inversely corre-
lated with insulin-like growth factor-1 receptor (IGF1R) [85].
miR-26a attenuates FGF9 [86], miR-34a inhibits PDGFR-a/b
[87], andmiR-338 decreases NRP1, a receptor for the vascular
endothelial growth factor (VEGF) [19]. All five miRNAs are
downregulated in GC and can inhibit cell migration. TGFβ
not only activates the Ras-PI3K-Akt pathway [17] but also
promotes EMT by regulating Smad2/3 [80]. Surprisingly, S-
S Lo et al. reported that miR-370 increased the migration of
GC cells by disrupting TGFβ signaling [88]. However, TGFβ
is not the only way to regulate Smads. miR-155, which is
downregulated by DNA methylation, may inhibit Smad2 ex-
pression by targeting its 3′UTR [89]. In addition, ROS pro-
motes the expression of miR-21 in GC [14]. In turn, upregu-
lated miR-21 inhibits PTEN [12], reducing its inhibitory effect
on Akt [17]. Furthermore, Cox-2 stimulated by nicotine can
promote miR-21 expression via activating NF-κB, which tar-
gets miR-21 directly [15]. Thus, a complex network forms
among NF-κB, Akt, and EMT by regulating miRNAs.

NF-κB not only targets miRNAs but is also regulated by
many miRNAs in GC (Fig. 4). As an oncomir, miR-363 [60]
enhances EMT through inhibitingMBP-1, which blocks Cox-
2 expression. Consistently, the upregulation of Cox-2 acti-
vates NF-κB/Snail signaling but decreases E-cadherin expres-
sion [90]. The reduction of miR-146a is associated with the
upregulation of EGFR and IRAK1. IRAK1 is upstream of
NF-κB, and EGFR activates NF-κB by attenuating IκB [83].
miR-1228* is downregulated and forms a negative feedback
loop with NF-κB through targeting CK2A2 expression, which
degrades IκB [91]. DNA hypermethylation can result in low
miR-9 expression in GC. Dysregulated miR-9 affects cell
metastasis in two ways. First, it inhibits NF-κB1. Second,
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it decreases the expression of MMP2, MMP9, Twist, and
N-cadherin [48].

Direct effects of miRNAs and lncRNAs on EMT-TFs
or the phenotype of GC cells

In addition to affecting the signaling upstream of EMT, a host
of miRNAs and lncRNAs can also directly regulate the EMT-
TFs or the phenotype of GC cells (Fig. 4). miR-101, which is
downregulated in GC, increases the expression of E-cadherin
through inhibiting EZH2 [92]. In GC, lack of ETS2 causes the
upregulation of miR-196b, which increases the expression of
vimentin, MMP2, and MMP9, but decreases E-cadherin [93].
The miR-200 family, including miR-200a/b/c, is downregu-
lated in GC. During EMT, they not only negatively regulate
ZEB1/2 [94] but also inhibit DNA methyltransferases
(DNMTs), leading to the hypomethylation of promoter DNA
and upregulation of E-cadherin [39]. Furthermore, miR-135a
downregulation in GC can increase E-cadherin expression by

suppressing Slug expression and inhibiting N-cadherin ex-
pression [95]. Song et al. reported that with the transfection
ofmiR-194mimics, both the expression of N-cadherin and the
metastasis of GC cells were suppressed [96]. miR-146a/b
downregulation in GC can regulate metastasis by reducing
the expression of epigenetic regulator ubiquitin-like contain-
ing PHD ring finger 1 (UHRF1), which maintains DNAmeth-
ylation by recruiting DNMT1. DNA hypermethylation can
silence CDH4 and RUNX3. CDH4 encodes R-cadherin, and
Runx3 inhibits MMP9 via upregulating TIMP-1 [97]. Both
miR-192 and miR-215 are upregulated in GC and can signif-
icantly decrease the expression of ALCAM, a cell adhesion
molecule expressed by epithelial cells [98]. Like miRNAs,
lncRNAs play important roles in EMT. HULC is
overexpressed in GC, and knockdown of HULC can down-
regulate vimentin and upregulate E-cadherin expression [78].
In addition, HOTAIR, which is also upregulated in GC, pro-
motes EMT by stimulating the expression of Snail, MMP1,
and MMP3 [99].

Fig 4 ncRNAs associated with EMT in GC. MiRNAs and lncRNAs affect gastric cancer cell metastasis. By regulating EMT, onco-ncRNAs promote
gastric cancer cell metastasis. Conversely, tumor suppressor ncRNAs suppress gastric cancer cell metastasis

Tumor Biol. (2015) 36:521–532 527



Effect of miRNAs and lncRNAs on cancer cell motility

During EMT, cancer cell motility also changes greatly and is
regulated by many ncRNAs (Fig. 4). Accumulating evidence
has reported that Rho [100] promotes cell invasion by regu-
lating the PI3K/Akt and ROCK signaling pathways, which
promote actomyosin contractility via mediating the phosphor-
ylation of MLC, significantly contributing to cell motility
[101, 102]. Epigenetically silenced miR-338-3p can inhibit
the expression of Rac1, a Rho family member, by reducing
SSX2IP expression [103]. Both downregulated miR-135 [95]
and miR-148a [102], which is silenced by DNA hypermethy-
lation [104], target ROCK1 directly. PINCH, integrin-linked
kinase (ILK) and parvin work as a PINCH–ILK–parvin (PIP)
complex. PIP complexes provide crucial physical linkages
between integrins and the actin cytoskeleton and transduce
signaling from the ECM to intracellular effectors. ILK con-
tains many distinct integrin binding sites. It is therefore as-
sumed that an integrin β-IPP-actin pathway is involved in
abnormal cell-ECM adhesion and cell motility [105]. In GC,
downregulated miR-625 [106] and miR-29c [107] can target
ILK and integrin β, respectively. However, miR-22 [108] and
miR-152 [109] suppress GC cell motility partially by
inhibiting CD151, which contributes to integrin-mediated

metastasis. Let-7f inhibits and binds to the 3′-UTR of
MYH9, which codes for myosin IIA directly, leading to an
attenuation of cell motility [110].

Degradation of ECM by ncRNAs

The degradation of the ECM is a crucial step in the progression
of tumor metastasis. MMPs hydrolyze type IV collagen and
promote cell invasion [111]. Similarly,MMPs are also inhibited
or activated by many signaling molecules and ncRNAs
(Fig. 5). Bcl-w promotes GC metastasis by activating the
PI3K-Akt-Sp1 pathway. miR-335, which is downregulated in
GC, prevents cell invasion and metastasis by targeting speci-
ficity protein 1 (Sp1) directly, and indirectly through regulating
Bcl-w [47]. miR-22, miR-133a, miR-133b, and miR-145 are
also downregulated in GC and can inhibit metastasis via nega-
tively regulating Sp1 [45, 112]. Meanwhile, Qiu et al. reported
that in GC, knockdown of Sp1 reduced the expression of
MMP-9 [45]. MMP-9 may therefore be the common effector
of the five miRNAs. N-cadherin also acts as an upstream pro-
moter ofMMP9 and is directly inhibited by miR-145, which is
downregulated in GC [113]. In addition, both MMP1 and
MMP9 are downstream of v-ets erythroblastosis virus E26 on-
cogene homolog 1 (Ets1), and Ets1 is suppressed by miR-145

Fig 5 Degradation of ECM by ncRNAs in GC. MiRNAs and lncRNAs affect gastric cancer cell metastasis. By regulating remodeling of ECM, onco-
ncRNAs promote gastric cancer cell metastasis. Conversely, tumor suppressor ncRNAs suppress gastric cancer cell metastasis

Fig 6 Angiogenesis by ncRNAs
in GC. MiRNAs and lncRNAs
affect gastric cancer cell
metastasis. By regulating
angiogenesis, onco-ncRNAs
promote gastric cancer cell
metastasis. Conversely, tumor
suppressor ncRNAs suppress
gastric cancer cell metastasis
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[114] and miR-9 [48, 49] downregulation in GC. As a member
of the tissue inhibitors of metalloproteinases (TIMPs) family,
TIMP2 can combine with MMP2 directly and work as down-
stream of miR-106a, which is upregulated in GC [115].
However, miR-21 [2] and miR-25 [116], which are also elevat-
ed inGC, can suppress reversion-inducing cysteine-rich protein
with kazal motifs (RECK), a newMMP inhibitor, which simul-
taneously inhibits MMP-2, MMP-9, and MMP14. miR-874
can suppress MT1-MMP, MMP-2, and MMP-9, and these in-
hibitory effects may be dependent upon AQP3 [117]. In addi-
tion to these indirect effects, many miRNAs and lncRNAs act
as direct regulators of MMPs in GC. For example, miR-29
targets MMP2 [41], and miR-148a targets MMP7 [118].
Furthermore, upregulated HOTAIR can induce the expression
of MMP1 and MMP3 [99].

Angiogenesis by ncRNAs

Tumor-associated endothelial cells, composing the arteries,
veins, and capillaries, are prominent tumor stromal constitu-
ents and play key roles in cell metastasis [79]. Although the
impact is not so great as on EMT, some ncRNAs affect the
development of tumor-associated angiogenesis (Fig. 6). miR-
126, which was downregulated, facilitated GC angiogenesis
by regulating VEGF-A [119]. miR-382 was induced by hyp-
oxia, promoted angiogenesis, and acted as an angiogenic on-
cogene by repressing PTEN, which inhibited miR-382-
induced angiogenesis and VEGF secretion [120]. miR-18a
overexpression significantly reduced tumor angiogenesis and
substantially reduced the inactivation of the mTOR pathway.
Accompanying mTOR inactivation, the angiogenic factors
hypoxia-inducible factor 1 alpha and vascular endothelial
growth factor were significantly downregulated [121]. miR-
145 was downregulated and suppressed Ets1 expression via
the binding site in the 3′-UTR, thus inhibiting the invasion,
metastasis, and angiogenesis of gastric cancer cells [114].
RuPAR is reduced and inversely associated with the expres-
sion of VEGF protein in GC tissues. Moreover, both are sig-
nificantly correlated with invasion depth, lymph node metas-
tasis, and distant metastasis [122]. Therefore, we speculated
that ruPAR promotes GC metastasis by stimulating
angiogenesis.

Conclusion

The molecular mechanisms of miRNAs and lncRNAs in gas-
tric carcinogenesis are much more complex than we discussed
in this paper. Functional analyses have shown that these
miRNAs and lncRNAs interact with mRNAs from oncogenes
and tumor suppressor genes. The altered expression of
ncRNAs in GC promotes cell cycle progression via direct
and indirect regulation of Akt pathways, CDKIs or Myc,

reduces apoptotic signaling through the regulation of apopto-
sis initiators and apoptosis effectors, and promotes cell migra-
tion and invasion by regulating EMT pathways, degradation
of ECM by ncRNAs or angiogenesis. They work in a network
rather than as individuals. One ncRNA can affect several bio-
logical behaviors, including the cell cycle, apoptosis, and me-
tastasis, through several signaling pathways. Meanwhile, one
signaling pathway can be affected by several ncRNAs and can
regulate several biological behaviors. Therefore, blocking on-
ly one of these functional sites or ncRNAs may not stop the
progress of gastric tumorigenesis. These novel mechanisms of
miRNA and lncRNAs not only help us elucidate the patho-
genesis of GC, but also offer us opportunities for ncRNA-
targeting strategies. However, the great complexity of these
mechanisms also brings a huge challenge to the study of
ncRNAs in GC.
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