9 research outputs found

    Olanzapine leads to nonalcoholic fatty liver disease through the apolipoprotein A5 pathway

    No full text
    The antipsychotic drug olanzapine was reported to induce nonalcoholic fatty liver disease (NAFLD), whereas the underlying mechanism remains incompletely understood. This study investigated whether apolipoprotein A5 (apoA5) and sortilin, two interactive factors involved in NAFLD pathogenesis, are implicated in olanzapine-induced NAFLD. In our study, at week 8, olanzapine treatment successfully induced hepatic steatosis in female C57 BL/6 J mice, which was independent of body weight gain. Likewise, olanzapine effectively mediated hepatocyte steatosis in HepG2 cells characterized by substantially elevated intracellular lipid droplets. Increased plasma triglyceride concentration and decreased plasma apoA5 levels were observed in mice treated with 8-week olanzapine. Surprisingly, olanzapine markedly enhanced hepatic apoA5 protein levels in mice, without a significant effect on rodent hepatic ApoA5 mRNA. Our in vitro study showed that olanzapine reduced apoA5 protein levels in the medium and enhanced apoA5 protein levels in hepatocytes, whereas this drug exerted no effect on hepatocyte APOA5 mRNA. By transfecting APOA5 siRNA into HepG2 cells, it was demonstrated that APOA5 knockdown effectively reversed olanzapine-induced hepatocyte steatosis in vitro. In addition, olanzapine drastically increased sortilin mRNA and protein levels in vivo and in vitro. Interestingly, SORT1 knockdown reduced intracellular apoA5 protein levels and increased medium apoA5 protein levels in vitro, without affecting intracellular APOA5 mRNA levels. Furthermore, SORT1 knockdown greatly ameliorated hepatocyte steatosis in vitro. This study provides the first evidence that sortilin inhibits the hepatic apoA5 secretion that is attributable to olanzapine-induced NAFLD, which provides new insight into effective strategies against NAFLD for patients with schizophrenia administered olanzapine

    Coexistence of blaKPC-2 and blaNDM-1 in one IncHI5 plasmid confers transferable carbapenem resistance from a clinical isolate of Klebsiella michiganensis in China

    No full text
    ABSTRACT: Objectives: This study firstly identified an IncHI5 plasmid pK254-KPC_NDM co-carrying two different class carbapenemase genes blaKPC-2 and blaNDM-1 in Klebsiella michiganensis K254. Methods: The strain K254 was sequenced by high-throughput genome sequencing. A detailed genomic and phenotypic characterization of pK254-KPC_NDM was performed. Results: pK254-KPC_NDM displayed the conserve IncHI5 backbone and carried a resistant accessory region: Tn1696-related transposon Tn7414 containing blaKPC-2 and blaNDM-1. A sequence comparison was applied to a collection of four Tn1696-related transposons (Tn7414–Tn7417) harbouring carbapenemase genes. For all these four transposons, the blaNDM-1 was carried by Tn125 derivatives within three different mobile genetic elements. Tn7414 further acquired another carbapenemase gene, blaKPC-2, because of the integration of the local blaKPC-2 genetic environment from Tn6296, resulting in the high-level carbapenem resistance of K. michiganensis K254. The conjugal transfer and plasmid stability experiments confirmed that pK254-KPC_NDM could be transferred intercellularly and keep the stable vertical inheritance in different bacteria, which would contribute to the further dissemination of multiple carbapenemase genes and enhance the adaption and survival of K. michiganensis under complex and diverse antimicrobial selection pressures. Conclusion: This study was the first to report the K. michiganensis isolate coharbouring blaKPC-2 and blaNDM-1 in the Tn1696-related transposon in IncHI5 plasmid. The emergence of novel transposons simultaneously carrying multiple carbapenemase genes might contribute to the further dissemination of high-level carbapenem resistance in the isolates of the hospital settings and pose new challenges for the treatment of nosocomial infection

    Efficacy of an autophagy-targeted DNA vaccine against avian leukosis virus subgroup J

    No full text
    Infection with the avian leukosis virus subgroup J (ALV-J) can lead to neoplastic disease in chickens, inflicting significant economic losses to the poultry industry. Recent reports have identified inhibitory effects of ALV-J on autophagy, a process involving in innate and adaptive immunity. Inspired by this connection between autophagy and immunity, we developed a novel DNA vaccine against ALV-J which includes co-administration of rapamycin to stimulate autophagy. To measure the efficacy of the developed prototype vaccine, five experimental groups of seven-day-old-chickens was immunized three times at three-week intervals respectively with vector, pVAX1-gp85, pVAX1-gp85-LC3, pVAX1-gp85 + rapamycin and pVAX1-gp85-LC3 + rapamycin through electroporation. We then tested their antibody titers, cytokine levels and cellular immune responses. The immunoprotective efficacy of the prototype vaccines against the challenge of the ALV-J GD1109 strain was also examined. The results showed that the combination of pVAX1-gp85-LC3 and rapamycin was able to induce the highest antibody titers, and enhance interleukin(IL)-2, IL-10 and interferon (IFN)-gamma expression, and the chickens immunized with the combination of pVAX1-gp85-LC3 and rapamycin showed the highest percentage of CD3+ CD8+ T lymphocytes. Based on our results, we suggest that stimulating autophagy can improve the efficacy of DNA vaccines and that our DNA vaccine shows the potential of being a candidate vaccine against ALV-J. This study provides a novel strategy for developing vaccines against ALV-J. (C) 2016 Elsevier Ltd. All rights reserved
    corecore